• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Чети

    Чети, четверти, четвертные приказы, центральные государственные учреждения России 2-й половины 16 - 17 вв. с финансовыми и административно-судебными функциями по отношению к тяглому населению…



    Чётки

    Чётки, бусы (деревянные, костяные, янтарные и пр.), нанизанные на шнурок и применяемые для отсчёта прочитанных молитв и поклонов. Особенно распространены в католической церкви, буддизме и…



    Четласский Камень

    Четласский Камень, платообразная возвышенность Тиманского кряжа, между рр. Мезень и Пижма, в Архангельской области и Коми АССР. Высота до 463 м. Сложена метаморфическими сланцами. Смешанные и хвойные…



    Четники

    Четники, на Балканском полуострове: 1) в 15-19 вв. участники (главным образом гайдуки) вооруженной национально-освободительной борьбы партизанских отрядов (чет) против османского ига. Видные…



    Чётное число

    Чётное число, целое число, делящееся без остатка на 2. Таковы числа 0, =2, =4, =6,... Всякое Ч. ч. можно представить в виде 2m, где m - целое число…



    Чётность

    Чётность, квантовомеханическая характеристика состояния физической микрочастицы (молекулы, атома, атомного ядра, элементарной частицы), отображающая свойства симметрии этой микрочастицы относительно зеркальных отражений. В процессах, обусловленных сильными взаимодействиями и электромагнитными взаимодействиями, имеет место закон сохранения Ч.: физическая система, обладавшая в начальном состоянии зеркальной симметрией определённого типа, сохраняет эту симметрию во все последующие моменты времени. Сохранение Ч. приводит к ряду отбора правил в электромагнитном излучении атомов и атомных ядер, в ядерных реакциях и в реакциях взаимопревращений элементарных частиц.

    Закон сохранения Ч. можно продемонстрировать на примере Зеемана эффекта. При наложении магнитного поля интенсивность излучения отдельных спектральных линий остаётся симметричной относительно плоскости, перпендикулярной полю, хотя и перестаёт быть одинаковой во всех направлениях. Излучение вдоль поля такое же, как и в противоположном направлении. Если представить себе установку для наблюдения эффекта Зеемана в виде кругового проводника с током и с образцом, помещенным в центре круга, то зеркальная симметрия этой установки становится очевидной, но лишь при условии, что все элементарные частицы, из которых состоит установка, обладают зеркальной симметрией. Т. о., закон сохранения Ч. основывается на допущении, что электроны, протоны и другие частицы переходят в себя при зеркальном отражении.

    Вместо зеркальной симметрии относительно плоскости удобнее рассматривать операцию инверсии координатных осей, r ® —r (или х ® —х, у ® —у, z ® —z) (см. Пространственная инверсия).

    Законом сохранения Ч. определяются трансформационные свойства физических величин при инверсии координатных осей. Так, из допущения о том, что заряженная частица, например электрон, при инверсии переходит сама в себя, следует, что электрический заряд q есть скаляр, плотность тока j и напряжённость электрического поля Е — истинные (полярные) векторы, а напряжённость магнитного поля Н — аксиальный вектор (псевдовектор): q ® q', j ® —j', Е ® —Е', Н ® Н'.

    В слабых взаимодействиях, обусловливающих, в частности, бета-распад ядер, закон сохранения Ч. нарушается. Такое нарушение было предсказано в 1956 Ли Цзун-дао и Ян Чжэнь-нином и подтверждено экспериментально в 1957 Ву Цзянь-сюн с сотрудниками в b-распаде ядер, а также американскими физиками Л. Ледерманом, Р. Гарвином и др. в распаде мюона. Ч. не сохраняется также в распадах заряженных пи-мезонов, К-мезонов и гиперонов. Советскими физиками Ю. Г. Абовым и др., а также В. М. Лобашёвым обнаружено слабое несохранение Ч. при нуклон-нуклонных взаимодействиях.

    На рис. изображена принципиальная схема опыта Ву. Образец, содержащий радиоактивный изотоп 60Co, помещен в магнитное поле Н кругового тока. Поле Н ориентирует вдоль поля сравнительно большие по величине магнитные моменты ядер 60Со. Маленькой стрелкой указано направление скоростей электронов внутри проводника. Как и в эффекте Зеемана, вся система зеркально симметрична относительно плоскости, в которой течёт круговой ток. При выполнении закона сохранения Ч. интенсивность излучения электронов (е¾) при электронном (b-распаде должна быть одинаковой по обе стороны этой плоскости. В эксперименте же наблюдалась резкая асимметрия: по одну сторону плоскости испускалось на 40% больше электронов, чем по другую. Из опыта Ву следует, что напряжённость магнитного поля не аксиальный, а полярный вектор. Это не противоречит уравнениям электродинамики, если одновременно принять, что плотность тока и напряжённость электрического поля — аксиальные векторы, а электрический заряд — псевдоскаляр. Псевдоскалярность заряда означает, что при зеркальном отражении электроны переходят в позитроны (е+) и вообще все частицы — в соответствующие античастицы. Возможность такой трактовки отражений была указана американскими учёными Э. Вигнером, Г. Виком и А. Уайтменом ещё в 1952. Зеркальное отражение, сопровождающееся заменой всех частиц на античастицы, Л. Д. Ландау назвал комбинированной инверсией. Допущение о симметрии законов природы относительно комбинированной инверсии выражается законом сохранения комбинированной чётности. При замене закона сохранения Ч. на закон сохранения комбинированной Ч. схема опыта Ву перестаёт быть зеркально симметричной, т.к. зеркальным отображением этого опыта (рис.) будет позитронный бета-распад ядра антикобальта,

    (состоящего из антипротонов и антинейтронов), в магнитном поле кругового тока позитронов. Т. к. заряд позитрона положителен, то при том же направлении движения носителей заряда знак тока изменится, что приведёт и к изменению знака магнитного поля (Н’).

    Т. о., закон сохранения Ч. является приближённым, справедливым лишь в пренебрежении слабыми взаимодействиями. С такой же точностью справедлива традиционная трактовка (Н — аксиальный вектор и т.д.) трансформационных свойств электромагнитных величин относительно инверсии координатных осей.

    В квантовой теории Ч. состояния системы из n частиц определяется как собственное значение оператора инверсии Р. Действие оператора Р на вектор состояния Y (p1,..., pn) состоит в изменении знаков импульсов pi частиц и в умножении на произведение П1... Пn внутренних чётностей частиц. Внутренняя Ч. — неотъемлемое свойство частицы и равна либо +1, либо —1. Частицы, для которых Пк = 1, называются чётными, а частицы, у которых Пк = —1, — нечётными. Внутренняя Ч. пи-мезонов отрицательна. Внутренние Ч. античастиц с полуцелым спином противоположны Ч. соответствующих частиц. Оператор Р не действует на проекции спинов и на заряды. Собственные значения оператора Р равны ± 1. Состояния с Р = 1 называются чётными, а с Р = —1 — нечётными.

    Из определения Ч. вытекают правила для установления Ч. физических систем из нескольких частиц: 1) Ч. системы n частиц с орбитальными моментами

    ,...,

    равна

    П1... Пn

    (здесь постоянная Планка, li — целые числа); 2) Ч. П12 сложной системы, состоящей из двух подсистем с Ч. соответственно П1, П2, равна П12 = П1П2(1) L, где орбитальный момент относительного движения подсистем.

    У квантов электромагнитного поля не существует ни внутренней Ч., ни орбитального момента. Ч. кванта электромагнитного излучения (фотона) определяется его мультипольностью (см. Мультиполь). Ч. электрического 2l-поля равна (—1) l, а Ч. магнитного 2l-поля равна (—1) l+1. Поэтому Ч. физ. системы сохраняется при испускании или поглощении электрического мультипольного кванта с чётным l или магнитного мультипольного кванта с нечётным l и изменяется на противоположную при испускании или поглощении электрического (магнитного) мультипольного кванта с нечётным (чётным) l. Правила отбора по Ч. при электромагнитном излучении атомов и ядер возникают за счёт того, что при одинаковой мультипольности и прочих равных условиях магнитное излучение значительно слабее электрического. Отношение вероятностей магнитного и электрических излучений имеет порядок (2pR/l)2, где R — линейный размер излучателя, l длина волны излучаемого кванта. Это отношение и для ядер, и для атомов, как правило, значительно меньше единицы, так что правила отбора по Ч. проявляются достаточно резко.

    Закон сохранения Ч. (называемый также Р-инвариантностью) формулируется как сохранение величины Р при сильных и электромагнитных взаимодействиях.

    Понятие внутренней Ч. частицы, а тем самым и Ч. состояния, содержит некоторую степень неоднозначности, связанную с невозможностью сравнить между собой Ч. состояний, различающихся значениями хотя бы одного из сохраняющихся зарядов — электрического, барионного и др. Поэтому, в частности, Ч. вакуумного состояния, Ч. протона, нейтрона, электрона произвольны и могут быть выбраны положительными. Но уже, например, Ч. пи-мезона, позитрона, антипротона станут при таком выборе строго определёнными (отрицательными).

    С понятием Ч. тесно связан фундаментальный вопрос о симметрии реального пространства относительно зеркальных отражений. Методами теории групп доказывается, что если пространство обладает зеркальной симметрией, то должны строго выполняться либо закон сохранения Ч., либо инвариантность при комбинированной инверсии. Экспериментально установлено нарушение обоих этих законов при слабых взаимодействиях. Поэтому есть основание считать, что либо пространство не обладает симметрией между правым и левым, либо эта симметрия нарушается в определённых типах взаимодействий (например, приводящих к распаду т. н. долгоживущего нейтрального К-мезона, ® 2p).

    Лит.: Ли Ц., Ву Ц., Слабые взаимодействия, пер. с англ., М., 1968; Широков Ю. М., Юдин Н. П., Ядерная физика, М., 1972; Ли Цзун-дао, Янг Чжэнь-нин, в сборнике: Новые свойства симметрии элементарных частиц, пер. с англ., М., 1957, с. 13; Ву Цзянь-сюн [и др.], там же, с. 69; Гарвин Р., Ледерман Л., Вейнрих М., там же, с. 75; Abov Yu. G. et al, "Physics Letters", 1968, v. 27B, № 1, p. 16; Лобашов В. М., "Вестник АН СССР", 1969, № 2, с, 58; Вигнер Е., "Успехи физических наук", 1958, т. 65, в. 2, с. 257; Wick G., Wightman A., Wigner Е., "Physical Review", 1952, v. 88, p. 101; Ландау Л. Д., "Журнал экспериментальной и теоретической физики", 1957, т. 32, в. 2, с. 405; Широков Ю. М., там же, 1958, т. 34, в. 3, с. 717; его же, там же, 1960, т. 38, в. 1, с. 140.

    Ю. М. Широков.

     

    Сильные взаимодействия

    Сильные взаимодействия, одноиз основных фундаментальных (элементарных) взаимодействий природы (наряду с электромагнитным, гравитационным и слабым взаимодействиями). Частицы, участвующие в С. в…

    Электромагнитные взаимодействия

    Электромагнитные взаимодействия, тип фундаментальных взаимодействий (наряду с гравитационным, слабым и сильным), который характеризуется участием электромагнитного поля в процессах взаимодействия…

    Отбора правила

    Отбора правила, правила, определяющие возможные квантовые переходы для атомов, молекул, атомных ядер, взаимодействующих элементарных частиц и др. О. п. устанавливают, какие квантовые переходы…

    Зеемана эффект

    Зеемана эффект, расщепление спектральных линий под действием магнитного поля. Открыто в 1896 П. Зееманом при исследовании свечения паров натрия в магнитном поле. Для наблюдения З. э. источник света…

    Пространственная инверсия

    Пространственная инверсия (символ Р), изменение пространственных координат событий (x, у, z), определённых в некоторой декартовой системе координат, на их противоположные значения: х ° -х, у ° - у, z…

    Слабые взаимодействия

    Слабые взаимодействия, один из четырёх типов известных фундаментальных взаимодействий между элементарными частицами (три других типа - электромагнитное, гравитационное и сильное). С. в. гораздо слабее…

    Бета-распад

    Бета-распад, b-распад, радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в…

    Ли Цзун-дао

    Ли Цзун-дао, Ли (Lee Tsung-Dao) (р. 25.11.1926, Шанхай), китайский физик. Учился в университетах Ханькоу и Куньмина, а после переезда (1946) в США - в Чикагском университете. С 1953 профессор…

    Ян Чжэнь-нин Янг

    Ян Чжэнь-нин, Янг (Yang) (р. 22.9.1922, Хэфэй, провинция Аньхой), китайский физик: работает в США. В 1948-1949 работал в Чикагском университете, с 1949 в институте высших исследований в Принстоне (с…

    Мюоны

    Мюоны (старое название - m-мезоны), нестабильные элементарные частицы со спином1/2, временем жизни 2,2=10-6сек и массой, приблизительно в 207 раз превышающей массу электрона. Существуют положительно…

    Пи-мезоны

    Пи-мезоны, p-мезоны, пионы, группа из трёх нестабильных элементарных частиц - двух заряженных (p+ и p-) и одной нейтральной (p0); принадлежат к классу сильно взаимодействующих частиц (адронов) и…

    К-мезоны

    К-мезоны, каоны, группа нестабильных элементарных частиц, в которую входят две заряженные (К+, К-) и две нейтральные (К0, ) частицы с нулевым спином и массой приблизительно в 970 раз большей, чем…

    Гипероны

    Гипероны (от греч. hyper - сверх, выше), тяжёлые нестабильные элементарные частицы с массой, большей массы нуклона (протона и нейтрона), обладающие барионным зарядом и большим временем жизни по…

    Лобашёв Владимир Михайлович

    Лобашёв Владимир Михайлович (р. 29.7.1934, Ленинград), советский физик, член-корреспондент АН СССР (1970). Член КПСС с 1970. Окончил ЛГУ (1957). В 1957-72 работал в Физико-техническом институте АН…

    Античастицы

    Античастицы, группа элементарных частиц, имеющих те же значения масс и прочих физических характеристик, что и их "двойники" - частицы, но отличающихся от них знаком некоторых характеристик…

    Ландау Лев Давыдович

    Ландау Лев Давыдович [9(22).1.1908, Баку, - 1.4.1968, Москва], советский физик, академик АН СССР (1946), Герой Социалистического Труда (1954). Родился в семье инженера-нефтяника. После окончания…

    Комбинированная инверсия

    Комбинированная инверсия (СР), операция сопоставления физической системе, состоящей из каких-либо частиц, другой системы, состоящей из соответствующих античастиц и представляющей зеркальное…

    Собственные значения

    Собственные значения линейного преобразования или оператора А, числа l,длякоторых существует ненулевой вектор х такой, что Ах = lх; вектор х называется собственным вектором. Так, С. з…

    Спин

    Спин (от англ. spin - вращаться, вертеться.), собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. (При введении…

    Мультиполь

    Мультиполь (от мульти... и греч. polos - полюс), характеристика системы электрических зарядов ("полюсов"), обладающей определённой симметрией. Создаваемое системой электромагнитное поле, статическое…