• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Флор Луций

    Флор Луций (или Юлий) Анней [Lucius (Julius) Annaeus Florus], древнеримский историк 2 в., автор "Эпитом", или "Двух книг извлечений из Тита Ливия о всех войнах за 700 лет" (рус. пер., 1792), в которых…



    Флороглюцин

    Флороглюцин, 1,3,5-триоксибензол, один из трёхатомных фенолов (см. также Пирогаллол), бесцветные кристаллы сладкого вкуса, хорошо растворимые в спирте, эфире; tпл 217-219 °С. Образует дигидрат с двумя…



    Флор (судостр.)

    Флор (англ. floor, буквально - пол), поперечная днищевая балка между бортами судна, один из элементов днищевого набора корпуса судна. К концам Ф. (скуловым кницам) обычно крепятся шпангоуты. Ф…



    Флот

    Флот (франц. flotte, голл. vloot) (военный), оперативное объединение ВМФ крупных государств. Предназначен для выполнения оперативных и стратегических задач на определённом океанском или морском театре…



    Флотационные реагенты

    Флотационные реагенты, химические вещества, обусловливающие и регулирующие большинство процессов флотации. Ф. р., находясь в жидкой фазе пульпы и адсорбируясь на границах раздела фаз жидкость - газ и…



    Флотация

    Флотация (франц. flottation, от flotter – плавать), процесс разделения мелких твёрдых частиц (главным образом минералов), основанный на различии их в смачиваемости водой. Гидрофобные (плохо смачиваемые водой) частицы избирательно закрепляются на границе раздела фаз, обычно газа и воды, и отделяются от гидрофильных (хорошо смачиваемых водой) частиц. При Ф. пузырьки газа или капли масла прилипают к плохо смачиваемым водой частицам и поднимают их к поверхности.

    Ф. – один из основных методов обогащения полезных ископаемых, применяется также для очистки воды от органических веществ и твёрдых взвесей, разделения смесей, ускорения отстаивания в химической, нефтеперерабатывающей, пищевой и др. отраслях промышленности. В зависимости от характера и способа образования межфазных границ (вода – масло – газ), на которых происходит закрепление разделяемых компонентов (см. Поверхностно-активные вещества) различают несколько видов Ф.

    Первой была предложена масляная Ф., на которую в 1860 В. Хайнсу (Великобритания) был выдан патент. При перемешивании измельченной руды с маслом и водой сульфидные минералы избирательно смачиваются маслом и всплывают вместе с ним на поверхность воды, а порода (кварц, полевые шпаты) осаждается. В России масляная Ф. графита была осуществлена в 1904 в г. Мариуполе (ныне Жданов, УССР).

    Способность гидрофобных минеральных частиц удерживаться на поверхности воды, в то время как гидрофильные тонут в ней, была использована А. Нибелиусом (США, 1892) и Маквистеном (Великобритания, 1904) для создания аппаратов плёночной Ф., в процессе которой из тонкого слоя измельченной руды, находящегося на поверхности потока воды, выпадают гидрофильные частицы.

    Увеличение объёмов и расширение области применения Ф. связано с пенной Ф., при которой обработанные реагентами частицы выносятся на поверхность воды пузырьками воздуха, образуя пенный слой, устойчивость которого регулируется добавлением пенообразователей. Для образования пузырьков предлагались различные методы: образование углекислого газа за счёт химической реакции (С. Поттер, США, 1902), выделение газа из раствора при понижении давления (Ф. Элмор, Великобритания, 1906) – вакуумная Ф., энергичное перемешивание пульпы, пропускание воздуха сквозь мелкие отверстия.

    Для проведения пенной Ф. производят измельчение руды до крупности 0,5–1,0 мм в случае природногидрофобных неметаллических полезных ископаемых с небольшой плотностью (сера, уголь, тальк) и до 0,1–0,2 мм для руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу, а также при возникновении на частицах пузырьков газов, выделяющихся из раствора. На Ф. влияют ионный состав жидкой фазы пульпы, растворённые в ней газы (особенно кислород), температура, плотность пульпы. На основе изучения минералого-петрографического состава обогащаемого полезного ископаемого выбирают схему Ф., реагентный режим и степень измельчения, которые обеспечивают достаточно полное разделение минералов. Лучше всего Ф. разделяются зёрна размером 0,1–0,04 мм. Более мелкие частицы разделяются хуже, а частицы мельче 5 мк ухудшают Ф. более крупных частиц. Отрицательное действие частиц микронных размеров уменьшается специфическими реагентами. Крупные (1–3 мм) частицы при Ф. отрываются от пузырьков и не флотируются. Поэтому для Ф. крупных частиц (0,5–5 мм) в СССР разработаны способы пенной сепарации, при которых пульпа подаётся на слой пены, удерживающей только гидрофобизированные частицы. С той же целью созданы флотационные машины кипящего слоя с восходящими потоками аэрированной жидкости. Это – гораздо более производительные процессы, чем масляная и плёночная Ф.

    Для очистки воды, а также извлечения компонентов из разбавленных растворов в 50-х гг. был разработан метод ионной Ф., перспективный для переработки промышленных стоков, минерализованных подземных термальных и шахтных вод, а также морской воды. При ионной Ф. отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимодействуют с флотационными реагентами-собирателями, чаще всего катионного типа, и извлекаются пузырьками в пену или плёнку на поверхности раствора. Тонкодисперсные пузырьки для Ф. из растворов получают также при электролитическом разложении воды с образованием газообразных кислорода и водорода (электрофлотация). При электрофлотации расход реагентов существенно меньше, а в некоторых случаях они не требуются.

    Широкое использование Ф. для обогащения полезных ископаемых привело к созданию различных конструкций флотационных машин с камерами большого размера (до 10–30 м3), обладающих высокой производительностью. Флотационная машина состоит из ряда последовательно расположенных камер с приёмными и разгрузочными устройствами для пульпы. Каждая камера снабжена аэрирующим устройством и пеносъёмником.

    В СССР и за рубежом благодаря Ф. вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Фабрики выпускают до пяти видов концентратов. В ряде случаев хвосты Ф. не являются отходами, а используются в качестве стройматериалов, удобрений для сельского хозяйства и в др. целях. Ф. является ведущим процессом при обогащении руд цветных металлов. Внедряется использование оборотной воды, что снижает загрязнение водоёмов.

    В развитии теории Ф. сыграли важную роль работы рус. физикохимиков – И. С. Громека, впервые сформулировавшего в конце 19 в. основные положения процесса смачивания, и Л. Г. Гурвича, разработавшего в начале 20 в. положения о гидрофобности и гидрофильности. Существенное влияние на развитие современной теории Ф. оказали труды А. Годена, А. Таггарта (США), И. Уорка (Австралия), сов. учёных П. А. Ребиндера, А. Н. Фрумкина, И. Н. Плаксина, Б. В. Дерягина и др.

    Лит.: Мещеряков Н. Ф., Флотационные машины, М., 1972; Глембоцкий В. А., Классен В. И., Флотация, М., 1973; Справочник по обогащению руд, М., 1974.

    В. И. Классен, Л. А. Барский.

     

    Обогащение полезных ископаемых

    Обогащение полезных ископаемых, совокупность процессов первичной переработки твёрдого минерального сырья с целью выделения продуктов, пригодных для дальнейшей технически возможной и экономически…

    Поверхностно-активные вещества

    Поверхностно-активные вещества, вещества, способные накапливаться (сгущаться) на поверхности соприкосновения двух тел, называемой поверхностью раздела фаз, или межфазной поверхностью. На межфазной…

    Концентрат

    Концентрат [новолат. concentratus - сосредоточенный, концентрированный, от лат. con (cum) - с, вместе и centrum - центр, средоточие] в горной промышленности, продукт обогащения полезных ископаемых…

    Хвосты

    Хвосты в обогащении, отходы процессов обогащения полезных ископаемых, в которых содержание ценного компонента ниже, чем в исходном сырье. Отвальные Х. состоят в основном из пустой породы; полезные…

    Громека Ипполит Степанович

    Громека Ипполит Степанович [27.1(8.2).1851-13(25).10.1889] русский физик. После окончания Московского университета (1873) работал там же; с 1880 - в Казанском университете (с 1882 - профессор)…

    Гурвич Лев Гаврилович

    Гурвич Лев Гаврилович [15(27).3.1871, Полтава, - 30.5. 1926, Баку], советский специалист в области химии нефти. Окончил Базельский университет (1896). Работал химиком нефтяной лабораторий в Баку (с…

    Ребиндер Петр Александрович

    Ребиндер Петр Александрович [21.9(3.10).1898, Петербург, - 12.7.1972, Москва], советский физико-химик, академик АН СССР (1946; член-корреспондент 1933), Герой Социалистического Труда (1968). Окончил в…

    Фрумкин Александр Наумович

    Фрумкин Александр Наумович [12(24).10.1895, Кишинев, - 27.5.1976, Тула; похоронен в Москве], советский физико-химик, академик АН СССР (1932), Герой Социалистического Труда (1965). В 1915 окончил…

    Плаксин Игорь Николаевич

    Плаксин Игорь Николаевич [25.9(8.10).1900, Уфа,- 15.3.1967, Москва], советский учёный в области металлургии и горного дела, член-корреспондент АН СССР (1946). Член КПСС с 1945. После окончания…

    Дерягин Борис Владимирович

    Дерягин Борис Владимирович [р. 27.7(9.8).1902, Москва], советский учёный в области физической химии и молекулярной физики, член-корреспондент АН СССР (1946). Окончил МГУ (1922). С 1935 руководитель…