• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Радио

    Радио (от лат. radio - излучаю, испускаю лучи, radius - луч), 1) способ беспроволочной передачи сообщений на расстояние посредством радиоволн, изобретённый А. С. Поповым (1895). 2) Область науки и…



    Радио...

    Радио..., часть сложных слов, указывающая на их отношение к радио (например, радиоволны) или к радиоактивности (например, радиография)…



    "Радио"

    "Радио", массовый ежемесячный научно-популярный радиотехнический журнал, орган министерства связи и ДОСААФ СССР. Издаётся в Москве с 1924, под современным названием - с 1946 (до 1931 - "Радиолюбитель"…



    Радиоактивационный анализ

    Радиоактивационный анализ, то же, что активационный анализ…



    Радиоактивное загрязнение

    Радиоактивное загрязнение биосферы, попадание радиоактивных веществ (РВ) в живые организмы и среду их обитания (атмосферу, гидросферу, почву), происходящее в результате ядерных взрывов, удаления в…



    Радиоактивность

    Радиоактивность (от лат. radio — излучаю, radius — луч и activus — действенный), самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно — изотоп другого элемента). Сущность явления Р. состоит в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбуждённом долгоживущем (метастабильном) состоянии. Такие превращения сопровождаются испусканием ядрами элементарных частиц либо других ядер, например ядер 2He (a-частиц). Все известные типы радиоактивных превращений являются следствием фундаментальных взаимодействий микромира: сильных взаимодействий (ядерные силы) или слабых взаимодействий. Первые ответственны за превращения, сопровождающиеся испусканием ядерных частиц, например a-частиц, протонов или осколков деления ядер: вторые проявляются в b-распаде ядер. Электромагнитные взаимодействия ответственны за квантовые переходы между различными состояниями одного и того же ядра, которые сопровождаются испусканием гамма-излучения. Эти переходы не связаны с изменениями состава ядер и поэтому, согласно современной классификации, не принадлежат к числу радиоактивных превращений. Понятие "Р." распространяют также на b-распад нейтронов.

    Р. следует отличать от превращений составных ядер, образующихся в процессе ядерных реакций в результате поглощения ядром-мишенью падающей на него ядерной частицы. Время жизни такого ядра значительно превышает время пролёта падающей частицей расстояния порядка ядерных размеров (10-21—10-22 сек) и может достигать 10-13—10-14 сек. Поэтому условно нижней границей продолжительности жизни радиоактивных ядер считается время порядка 10-12 сек.

    Типы радиоактивных превращений. Все известные виды Р. можно разделить на две группы: элементарные (одноступенчатые) превращения и сложные (двухступенчатые). К первым относятся: 1) альфа-распад, 2) все варианты бета-распада (с испусканием электрона, позитрона или с захватом орбитального электрона), 3) спонтанное деление ядер, 4) протонная Р., 5) двупротонная Р. 116) двунейтронная Р. В случае b-распада достаточно большое время жизни ядер обеспечивается природой слабых взаимодействий. Все остальные виды элементарных радиоактивных процессов обусловлены ядерными силами. Замедление таких процессов до промежутков времени ³ 10-12 сек вызвано наличием потенциальных барьеров (кулоновского и центробежного), которые затрудняют вылет ядер или ядерных частиц.

    К двухступенчатым радиоактивным превращениям относят процессы испускания т. н. запаздывающих частиц: протонов, нейтронов, a-частиц, ядер трития и 3He, а также запаздывающее спонтанное деление. Запаздывающие процессы включают в себя b-распад как предварительную стадию, обеспечивающую задержку последующего, мгновенного испускания ядерных частиц. Т. о., в случае двухступенчатых процессов критерий Р. относительно времени жизни удовлетворяется только для первой стадии, благодаря её осуществлению за счёт слабых взаимодействий.

    Историческая справка. Открытие Р. датировано 1896, когда А. Беккерель обнаружил испускание ураном неизвестного вида проникающего излучения, названного им радиоактивным. Вскоре была обнаружена Р. тория, а в 1898 супруги М. Кюри и П. Кюри открыли два новых радиоактивных элемента — полоний и радий. Работами Э. Резерфорда и упомянутых учёных было установлено наличие 3 видов излучения радиоактивных элементов — a-, b- и g-лучей — и выявлена их природа. В 1903 Резерфорд и Ф. Содди выяснили, что испускание a-лучей сопровождается превращением химических элементов, например превращением радия в радон. В 1913 К. Фаянс (Германия) и Содди независимо сформулировали правило смещения, характеризующее перемещение изотопа в периодической системе элементов при различных радиоактивных превращениях.

    В 1934 супругами И. Жолио-Кюри и Ф. Жолио-Кюри была открыта искусственная Р., которая впоследствии приобрела особенно важное значение. Из общего числа (около 2000) известных ныне радиоактивных изотопов лишь около 300 природные, а остальные получены искусственно, в результате ядерных реакций. Между искусственной и естественной Р. нет принципиального различия. В результате изучения искусственной Р. были открыты новые варианты b-распада — испускание позитронов (И. и Ф. Жолио-Кюри, 1934) и электронный захват (Л. Альварес, 1938), предсказанный первоначально Х. Юкавой и С. Сакатой (Япония, 1935). Впоследствии были обнаружены сложные, включающие b-распад, превращения, в том числе испускание запаздывающих нейтронов (Дж. Даннинг с сотрудниками, США, 1939), запаздывающих протонов (В. А. Карнаухов с сотрудниками, СССР, 1962), запаздывающее деление ядер (Г. Н. Флёров с сотрудниками, 1966—71). Предсказана возможность существования запаздывающих излучателей ядер 3H и 3He (Э. Е. Берлович, Ю. Н. Новиков, СССР, 1969). В 1935 И. В. Курчатов с сотрудниками открыли явление изомерии (существование долгоживущих возбуждённых состояний) у искусственно радиоактивных ядер (см. Изомерия атомных ядер). В 1940 К. А. Петржак и Флёров открыли спонтанное деление ядер. Существование протонной активности предполагалось ещё Резерфордом. Перспективы обнаружения 4-го типа Р. и основные его характеристики изучались Б. С. Джелеповым (1951, СССР) и др. Экспериментально элементарный акт радиоактивного распада с испусканием протонов (из изомерного состояния) впервые наблюдали Дж. Черны с сотрудниками (США, 1970). В 1960 В. И. Гольданский предсказал существование двупротонной Р., а в 1971 Гольданский и Л. К. Пекер (СССР) — двунейтронный радиоактивный распад ядер (только из изомерного состояния).

    Закон радиоактивного распада. Единицы радиоактивности. Для процессов радиоактивного распада ядер (и элементарных частиц) характерен экспоненциальный закон уменьшения во времени среднего числа активных ядер. Этот закон отражает независимость распада отдельного ядра от остальных ядер. Обычно продолжительность жизни радиоактивных ядер характеризуют периодом полураспада — промежутком времени T1/2на протяжении которого число радиоактивных ядер уменьшается в среднем вдвое. Поскольку продолжительность жизни отдельного ядра оказывается неопределённой, экспоненциальный закон распада выполняется лишь в среднем, причём тем точнее, чем больше полное число радиоактивных ядер.

    Основная единица радиоактивности — кюри, первоначально определялась как активность 1 г Ra. В дальнейшем под 1 кюри стали понимать активность радиоактивного препарата, в котором происходит 3,7×1010 распадов в сек. Широко используются дробные единицы (например, мкюри, мккюри) и кратные единицы (ккюри, Мкюри). Другая единица радиоактивности — резерфорд, равна кюри, что соответствует 106 в сек.

    Альфа-распад представляет собой самопроизвольное превращение ядер, сопровождающееся испусканием двух протонов и двух нейтронов, образующих ядро . В результате a-распада заряд ядра уменьшается на 2, а массовое число на 4 единицы, например:

    .

    Кинетическая энергия вылетающей a-частицы определяется массами исходного и конечного ядер и a-частицы. Если конечное ядро образуется в возбуждённом состоянии, эта энергия несколько уменьшается, и, напротив, возрастает, если распадается возбуждённое ядро (в последнем случае испускаются т. н. длиннопробежные a-частицы). Энергетический спектр a-частиц дискретный. Период полураспада a-радиоактивных ядер экспоненциально зависит от энергии вылетающих a-частиц (см. Гейгера — Неттолла закон).Теория a-распада, основанная на квантовомеханическом описании проникновения через потенциальный барьер, была развита в 1928 Г. Гамовым и независимо — англ. физиками Р. Гёрни и Э. Коцдоном.

    Известно более 200 a-активных ядер, расположенных в основном в конце периодической системы, за Pb, которым заканчивается заполнение протонной ядерной оболочки с Z = 82 (см. Ядерные модели).Известно также около 20 a-радиоактивных изотопов редкоземельных элементов. Здесь a-распад наиболее характерен для ядер с числом нейтронов N = 84, которые при испускании a-частиц превращаются в ядра с заполненной нейтронной ядерной оболочкой (N =82). Времена жизни a-активных ядер колеблются в широких пределах: от 3×10—7сек (для 212Po) до (2—5)×1015 лет (природные изотопы 142Ce, 144Nd, 174Hf). Энергия наблюдаемого a-распада лежит в пределах 4—9 Мэв (за исключением длиннопробежных a-частиц) для всех тяжёлых ядер и 2—4,5 Мэв для редкоземельных элементов.

    Бета-распад представляет собой самопроизвольное взаимное превращение протонов и нейтронов, происходящее внутри ядра и сопровождающееся испусканием или поглощением электронов (е—) или позитронов (е+), нейтрино (ne) или антинейтрино ( ).

    1) Электронный b— -распад: n ® р + е— + ; например,

    .

    2) Позитронный b+-распад: p ® ; например,

    ( ).

    3) Электронный захват: p ® ; например,

    ( ).

    Захват электронов происходит с одной из атомных оболочек, чаще всего с ближайшей к ядру К-оболочки (К-захват), реже — со следующих, L- и М-оболочек (L- и М-захваты), b—-распад характерен для нейтроноизбыточных ядер, в которых число нейтронов больше, чем в устойчивых ядрах (а для ядер с Z > 83, если число нейтронов больше, чем в b-стабильных ядрах, испытывающих только a-распад). b+-распад и электронный захват свойственны нейтронодефицитным ядрам, более лёгким, чем устойчивые или b-стабильные ядра. Энергия при b-распаде распределяется между 3 частицами: электроном или позитроном, антинейтрино или нейтрино и конечным ядром; поэтому спектр b-частиц сплошной. Бета-радиоактивные изотопы встречаются у всех элементов периодической системы. Особенностью электронного захвата является слабая зависимость его скорости от химического состояния превращающихся атомов. Ядро захватывает электрон с какой-либо из электронных оболочек атома, а вероятность подобного захвата определяется строением не только внутренней оболочки, отдающей ядру электрон, но и (в меньшей степени) более отдалённых оболочек, в том числе и валентных. Изменение заряда ядра при b-распаде влечёт за собой последующую перестройку ("встряску") электронных атомных оболочек, возбуждение, ионизацию атомов и молекул, разрыв химических связей. Химические последствия b-распада (и в меньшей степени др. радиоактивных превращений) являются предметом многочисленных исследований (см. Радиохимия).

    Спонтанное деление представляет собой самопроизвольный распад тяжёлых ядер на два (реже — 3 или 4) осколка — ядра элементов середины периодической системы. Спонтанное деление и a-распад ограничивают возможности получения новых трансурановых элементов.

    Протонная и двупротонная Р. должны представлять собой самопроизвольный распад нейтронодефицитных ядер с испусканием 1 или одновременно 2 протонов, проникающих сквозь кулоновский барьер путём туннельного эффекта. Причиной возможности двупротонной Р. служит спаривание в ядре протонов с противоположно направленными спинами, сопровождающееся выделением энергии около 2 Мэв. В результате этого испускание из ядра одновременно пары протонов может потребовать затраты меньшей энергии, чем отрыв одного из них от другого, а в ряде случаев может идти даже с выделением энергии (причём за время > 10-12 сек), тогда как испускание одиночного протона потребовало бы, наоборот, затраты энергии.

    Трудности наблюдения протонной и двупротонной Р. обусловлены как коротким (по сравнению с др. типами Р.) временем жизни р- и 2р-радиоактивных ядер, так и тем, что эти ядра характеризуются очень сильным дефицитом нейтронов и потому могут быть получены в ядерных реакциях, сопровождающихся вылетом большого числа нейтронов и поэтому маловероятных. Протонную Р. до сих пор удалось наблюдать (см. выше) лишь при распаде не основного, а возбуждённого (изомерного) состояния ядра 53MCo. Двупротонная Р. так же, как и двунейтронный распад, экспериментально пока не обнаружены.

    Гамма-лучи. Ядерные изомеры. Испускание g-квантов сопровождает Р. в тех случаях, когда "дочерние" ядра образуются в возбуждённых состояниях. Время жизни ядер в таких возбуждённых состояниях определяется свойствами (спином, чётностью, энергией) данного уровня и нижележащих уровней, на которые могут происходить переходы с испусканием g-квантов. Длительность g-переходов резко возрастает с уменьшением их энергии и с увеличением разности моментов исходного и конечного состояний ядра. В ряде случаев эта длительность существенно превышает 10—10—10—9 сек, т. е. наряду с основным состоянием данного стабильного или радиоактивного ядра может относительно долго (иногда годы) существовать его метастабильное возбуждённое (изомерное) состояние. Для многих ядерных изомеров наблюдается явление внутренней электронной конверсии: возбуждённое ядро, не излучая g-квантов, передаёт свою избыточную энергию электронным оболочкам, вследствие чего один из электронов вылетает из атома. После внутренней конверсии возникает вторичное излучение рентгеновского и оптического диапазона вследствие заполнения одним из электронов освободившегося места и последующих переходов. Участие электронных оболочек в конверсионных переходах приводит к тому, что время жизни соответствующих изомеров зависит (хотя и очень слабо) от химического состояния превращающихся атомов.

    Известны изомеры, для которых преобладает не g-излучение с образованием др. состояния того же изотопа, но распад по какому-либо из основных типов Р. Так, изомер (T1/2 = 3,7 ч) испытывает, как и основной изотоп , b-распад; изомер (T1/2 = 45 сек), как и основной изотоп , — a-распад; изомер (T1/2 = 14 мсек) спонтанное деление.

    Радиоактивные ряды (семейства). Во многих случаях продукты радиоактивного распада сами оказываются радиоактивными и тогда образованию стабильного изотопа предшествует цепочка из нескольких актов радиоактивного распада. Примерами таких цепочек являются радиоактивные ряды природных изотопов тяжёлых элементов, которые начинаются нуклидами 238U, 235U, 232Th и заканчиваются стабильными изотопами свинца 206РЬ, 207РЬ, 208РЬ. Многие радиоактивные изотопы могут распадаться по 2 или нескольким из перечисленных выше основных типов Р. В результате такой конкуренции разных путей распада возникают разветвления радиоактивных превращений. Для природных радиоактивных изотопов характерны разветвления, обусловленные возможностью a- и b—-распадов. Для изотопов трансурановых элементов наиболее распространены разветвления, связанные с конкуренцией a- (реже b—-) распадов и спонтанного деления. У нейтронодефицитных ядер зачастую наблюдается конкуренция b+-распада и электронного захвата. Для многих изотопов с нечётными Z и чётными А оказываются энергетически возможными два противоположных варианта b-распада: b—-распад и электронный захват или b—- и b+-распады.

    Заключение. Открытие Р. оказало огромное влияние на развитие науки и техники. Оно ознаменовало начало эпохи интенсивного изучения свойств и структуры вещества. Новые перспективы, возникшие в энергетике, промышленности и многих др. областях человеческой деятельности благодаря овладению ядерной энергией, были вызваны к жизни обнаружением способности химических элементов к самопроизвольным превращениям. За работы, связанные с исследованием и применением Р., было присуждено более 10 Нобелевских премий по физике и химии, в том числе А. Беккерелю, П. и М. Кюри, Э. Ферми, Э. Резерфорду, Ф. и И. Жолио-Кюри, Д. Хевеши,О. Гану, Э. Макмиллану и Г. Сиборгу, У. Либби и др.

    Лит.: Кюри М., Радиоактивность, пер. с франц., 2 изд., М. — Л., 1960; Мурин А. Н., Введение в радиоактивность, Л., 1955; Давыдов А. С., Теория атомного ядра, М., 1958; Гайсинский М. Н., Ядерная химия и ее приложения, пер. с франц., М., 1961; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961; Учение о радиоактивности. История и современность, М., 1973.

    В. И. Гольданский, Е. М. Лейкин.

     

    Сильные взаимодействия

    Сильные взаимодействия, одноиз основных фундаментальных (элементарных) взаимодействий природы (наряду с электромагнитным, гравитационным и слабым взаимодействиями). Частицы, участвующие в С. в…

    Слабые взаимодействия

    Слабые взаимодействия, один из четырёх типов известных фундаментальных взаимодействий между элементарными частицами (три других типа - электромагнитное, гравитационное и сильное). С. в. гораздо слабее…

    Электромагнитные взаимодействия

    Электромагнитные взаимодействия, тип фундаментальных взаимодействий (наряду с гравитационным, слабым и сильным), который характеризуется участием электромагнитного поля в процессах взаимодействия…

    Гамма-излучение

    Гамма-излучение, коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жёстким рентгеновским излучением, занимая область более высоких частот. Г.-и. обладает…

    Нейтрон

    Нейтрон (англ. neutron, от лат. neuter - ни тот, ни другой; символ n), нейтральная (не обладающая электрическим зарядом) элементарная частица со спином 1/2 (в единицах постоянной Планка ) и массой…

    Ядерные реакции

    Ядерные реакции, превращения атомных ядер при взаимодействии с элементарными частицами, g-квантами или друг с другом. Для осуществления Я. р. необходимо сближение частиц (двух ядер, ядра и нуклона и т…

    Альфа-распад

    Альфа-распад (a-распад), испускание альфа-частиц атомными ядрами в процессе самопроизвольного (спонтанного) радиоактивного распада (см. Радиоактивность). При А.-р. из радиоактивного ("материнского")…

    Бета-распад

    Бета-распад, b-распад, радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в…

    Потенциальный барьер

    Потенциальный барьер в физике, пространственно ограниченная область высокой потенциальной энергии частицы в силовом поле, по обе стороны которой потенциальная энергия более или менее резко спадает. П…

    Тритий

    Тритий (лат. Tritium), Т (или 3H), радиоактивный изотоп водорода с массовым числом 3 (отсюда название: от греч. tritos - третий). Открыт в 1934 английским учёными Э. Резерфордом, М. Л. Олифантом и П…

    Беккерель Антуан Анри

    Беккерель (Becquerel) Антуан Анри (15.12.1852, Париж, - 25.8.1908, Круасик), французский физик, член Парижской АН (1889). Сын А. Э. Беккереля. Окончил Политехническую школу в Париже. Профессор…

    Полоний

    Полоний (лат. Polonium), Po, радиоактивный химический элемент VI группы периодической системы Менделеева, атомный номер 84. П. - первый элемент, открытый по радиоактивным свойствам П. Кюри и М…

    Радий

    Радий (лат. Radium), Ra, радиоактивный химический элемент II группы периодической системы Менделеева, атомный номер 88. Известны изотопы Р. с массовыми числами 213, 215, 219-230. Самым долгоживущим…

    Резерфорд Эрнест

    Резерфорд (Rutherford) Эрнест (30.8.1871, Брайтуотер, Новая Зеландия, - 19.10.1937, Кембридж), английский физик, заложивший основы учения о радиоактивности и строении атома; он первый осуществил…

    Содди Фредерик

    Содди (Soddy) Фредерик (2.9.1877, Истборн, - 22.9.1956, Брайтон), английский радиохимик, член Лондонского королевского общества (1910). В 1896 окончил Оксфордский университет. В 1900-02 работал под…

    Радон

    Радон (лат. Radonum), Rn, радиоактивный химический элемент VIII группы периодической системы Менделеева; атомный номер 86, относится к инертным газам. Три a-радиоактивных изотопа Р. встречаются в…

    Фаянс Казимир

    Фаянс (Fajans) Казимир (27.5.1887, Варшава, - 18.5.1975, Анн-Арбор, штат Мичиган), американский физико-химик. Поляк по происхождению. Окончил (1907) Лейпцигский университет, совершенствовался в…

    Периодическая система элементов

    Периодическая система элементов Д. И. Менделеева, естественная классификация химических элементов, являющаяся табличным (или др. графическим) выражением периодического закона Менделеева. П. с. э…

    Жолио-Кюри Ирен

    Жолио-Кюри (Joliot-Curie) Ирен (12.9.1897, Париж, - 17.3.1956, там же), французский физик, прогрессивный общественный деятель. Дочь П. Кюри и М. Склодовской-Кюри. По окончании Парижского…

    Жолио-Кюри Фредерик

    Жолио-Кюри (Joliot-Curie) Фредерик (19.3.1900, Париж, - 14.8.1958, там же), французский физик, прогрессивный общественный деятель, один из основателей и лидеров всемирного Движения сторонников мира…

    Электронный захват

    Электронный захват, вид радиоактивного распада ядер, при котором ядро захватывает электрон с одной из внутренних оболочек атома (К, L, М и др.) и одновременно испускает нейтрино. При этом ядро с…

    Альварес Луис

    Альварес (Aivarez) Луис (р. 13.6. 1911, Сан-Франциско), американский физик. Окончил университет в Чикаго (1932). Профессор Калифорнийского университета с 1945. В 1940-43 работал в Массачусетсском…

    Юкава Хидэки

    Юкава (Yukawa) Хидэки (р. 23.1.1907, Токио), японский физик, член Японской АН (1946). В 1929 окончил университет в Киото, с 1932 преподавал там же. В 1933-39 в университете в Осаке, с 1939 профессор…

    Флёров Георгий Николаевич

    Флёров Георгий Николаевич [р. 17.2 (2.3).1913, Ростов-на-Дону], советский физик, академик АН СССР (1968; член-корреспондент 1953), Герой Социалистического Труда (1949). Член КПСС с 1955. Окончил…

    Курчатов Игорь Васильевич

    Курчатов Игорь Васильевич [30.12.1902(12.1.1903), г. Сим, ныне Ашинского района Челябинской обл., - 7.2.1960, Москва], советский физик, академик АН СССР (1943), трижды Герой Социалистического Труда (…

    Изомерия атомных ядер

    Изомерия атомных ядер, существование у некоторых атомных ядер метастабильных состояний - возбуждённых состояний с относительно большими временами жизни (см. Ядро атомное). Некоторые атомные ядра имеют…

    Гольданский Виталий Иосифович

    Гольданский Виталий Иосифович (р. 18.6.1923, Витебск), советский физико-химик, член-корреспондент АН СССР (1962). Член КПСС с 1950. Окончил МГУ (1944). В 1942-52 работал в институте химической физики…

    Кюри (единица активности)

    Кюри, внесистемная единица активности нуклида в радиоактивном источнике (активности изотопа). Названа в честь французских учёных П. Кюри и М. Склодовской-Кюри. Сокращённое обозначение: русское - кюри…

    Резерфорд (единица активности нуклидов)

    Резерфорд, внесистемная единица активности нуклидов (радиоактивных изотопов) в радиоактивных образцах и источниках (см. Радиоактивность). Названа в честь Э. Резерфорда. Обозначения: русское рд…

    Гейгера - Неттолла закон

    Гейгера - Неттолла закон, закон, устанавливающий связь между вероятностью альфа-распада ядра и энергией a-частиц; выражается формулой…

    Гамов Георгий Антонович

    Гамов (Gamow) Георгий Антонович (4.3.1904, Одесса, - 19.8.1968, Болдер, штат Колорадо), американский физик. Окончил Ленинградский университет (1926). В 1928-31 работал в Гёттингене, Копенгагене…

    Ядерные модели

    Ядерные модели, приближённые методы описания некоторых свойств ядер, основанные на отождествлении ядра с какой-либо другой физической системой, свойства которой либо хорошо изучены, либо поддаются…

    Радиохимия

    Радиохимия, область химии, изучающая химию радиоактивных изотопов, элементов и веществ, законы их физико-химического поведения, химию ядерных превращений и сопутствующие им физико-химические процессы…

    Трансурановые элементы

    Трансурановые элементы,химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером Z 3 93. Известно 14 Т. э. Из-за относительно высокой…

    Туннельный эффект

    Туннельный эффект, туннелирование, преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при Т. э. неизменной) меньше высоты барьера. Т. э. - явление…

    Спин

    Спин (от англ. spin - вращаться, вертеться.), собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. (При введении…

    Чётность

    Чётность, квантовомеханическая характеристика состояния физической микрочастицы (молекулы, атома, атомного ядра, элементарной частицы), отображающая свойства симметрии этой микрочастицы относительно…

    Ферми Энрико

    Ферми (Fermi) Энрико (29.9.1901, Рим, - 28.11.1954, Чикаго), итальянский физик, внёсший большой вклад в развитие современной теоретической и экспериментальной физики. После окончания в 1922 Пизанского…

    Хевеши Дьёрдь

    Хевеши (Hevesy) Дьёрдь (Георг) (1.8.1885, Будапешт, - 5.7.1966, Фрейбург, ФРГ), венгерский химик, почётный академик Венгерской АН, иностранный член Лондонского королевского общества (1939). В 1908…

    Ган Отто

    Ган, Хан (Hahn) Отто (8.3.1879, Франкфурт-на-Майне, - 28.7.1968, Гёттинген), немецкий физик и радиохимик. Учился в Марбургском и Мюнхенском университетах. В 1910-34 профессор в Берлине. С 1912 работал…

    Макмиллан Эдвин Маттисон

    Макмиллан (McMillan) Эдвин Маттисон (родился 18.9.1907, Редондо-Бич, штат Калифорния), американский физик. Окончил Калифорнийский технологический институт в Беркли (1928); с 1935 сотрудник…

    Сиборг Гленн Теодор

    Сиборг (Seaborg) Гленн Теодор (р. 19.4. 1912, Ишпеминг, штат Мичиган), американский физик. Окончил университет в Лос-Анджелесе (1934). Получив степень доктора философии в Калифорнийском университете (…

    Либби Уиллард Франк

    Либби (Libby) Уиллард Франк (р.17.12.1908, Гранд-Валли, штат Колорадо), американский физико-химик. Получил степени бакалавра (1931) и доктора химии (1933) в Калифорнийском университете в Беркли; там…