• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Обратная конденсация

    Обратная конденсация, ретроградная конденсация, выпадение жидкой фазы в двух- или многокомпонентной газовой системе вблизи её критической точки при изотермическом снижении давления, фазовая диаграмма…



    Обратная лопата

    Обратная лопата, см. в ст. Механическая лопата…



    Обратная матрица

    Обратная матрица для данной квадратной матрицыА = порядка n такая матрица В = (того же порядка), что АВ = Е, где Е - единичная матрица; тогда выполняется также и равенство ВА = Е. О. м. обозначается…



    Обратная связь

    Обратная связь, обратное воздействие результатов процесса на его протекание или управляемого процесса на управляющий орган. О. с. характеризует системы регулирования и управления в живой природе…



    Обратная сила закона

    Обратная сила закона, распространение действия закона на отношения, возникшие до его издания. Как правило, закон обратной силы не имеет, т. е. он применяется только к отношениям, правам и обязанностям…



    Обратная теорема

    Обратная теорема, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: "если число делится на 6, то оно делится на 3" — верна, а О. т.: "если число делится на 3, то оно делится на 6" — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема "две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются", так и обратная к ней теорема "две непересекающиеся прямые на плоскости имеют общий перпендикуляр". Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. В Лобачевского геометрии вторая просто неверна, тогда как первая остаётся в силе. О. т. равносильна теореме, противоположной к прямой, т. е. теореме, в которой условие и заключение прямой теоремы заменены их отрицаниями. Поэтому прямая теорема равносильна теореме, противоположной к обратной, т. е. теореме, утверждающей, что если неверно заключение прямой теоремы, то неверно и её условие. Известный способ "доказательства от противного" как раз и представляет собой замену доказательства прямой теоремы доказательством теоремы, противоположной к обратной. Справедливость обеих взаимно обратных теорем означает, что выполнение условия любой из них не только достаточно, но и необходимо для справедливости заключения (см. Необходимые и достаточные условия).

     

    Лобачевского геометрия

    Лобачевского геометрия, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о…

    Необходимые и достаточные условия

    Необходимые и достаточные условия (математические). Необходимыми условиями правильности утверждения А называются такие условия, без соблюдения которых утверждение А заведомо не может быть верным, а…