• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Механика развития

    Механика развития, раздел биологии, изучающий причинные механизмы индивидуального развития организмов. Основанная в 80-х гг. 19 в. немецким учёным В. Ру М. р. бурно развивалась в 1-й трети 20 в…



    Механика сплошной среды

    Механика сплошной среды, раздел механики, посвященный изучению движения и равновесия газов, жидкостей и деформируемых твёрдых тел. К М. с. с. относятся: гидроаэромеханика, газовая динамика, упругости…



    Механика сыпучих сред

    Механика сыпучих сред, раздел механики сплошной среды, в котором исследуются равновесие и движение сыпучих сред (песчаных, глинистых и др. грунтов, зерна и т. д,). Задача М. с. с. - главным образом…



    "Механика твёрдого тела"

    "Механика твёрдого тела", "Известия АН СССР. Механика твёрдого тела", научный журнал, орган Отделения механики и процессов управления АН СССР. Выходит в Москве с 1966. В 1966-68 назывался "Инженерный…



    Механика тел переменной массы

    Механика тел переменной массы, раздел теоретической механики, в котором изучаются движения материальных тел, масса которых изменяется во время движения. Основоположники М. т. п. м. - И. В. Мещерский и…



    Механики уравнения канонические

    Механики уравнения канонические, уравнения Гамильтона, дифференциальные уравнения движения механической системы, в которых переменными, кроме обобщённых координат qi, являются обобщённые импульсы pi; совокупность qi и pi называется каноническими переменными. М. у. к. имеют вид:

    где H(qi, pi, t) — функция Гамильтона, равная (когда связи не зависят от времени, а действующие силы потенциальны) сумме кинетической и потенциальной энергий системы, выраженных через канонические переменные, s — число степеней свободы системы. Интегрируя эту систему обыкновенных дифференциальных уравнений 1-го порядка, можно найти все qi и pi как функции времени t и 2s постоянных, определяемых по начальным данным.

    М. у. к. обладают тем важным свойством, что позволяют с помощью т. н. канонических преобразований перейти от qi и pi к новым каноническим переменным Qi(qi, pi, t) и Pi(qi, pi, t), которые тоже удовлетворяют М. у. к., но с другой функцией H(Qi, Pi, t). Таким путём М. у. к. можно привести к виду, упрощающему процесс их интегрирования. М. у. к. используются, кроме классической механики, в статистической физике, квантовой механике, электродинамике и др. областях физики.

    С. М. Тарг.

     

    Обобщённые координаты

    Обобщённые координаты, независимые между собой параметры qi (r = 1, 2,..., s) любой размерности, число которых равно числу s степеней свободы механич. системы и которые однозначно определяют положение…

    Обобщённые импульсы

    Обобщённые импульсы, физические величины pi, определяемые формулами: pi = или pi = , где Т - кинетическая энергия, a L - Лагранжа функция данной механической системы, зависящие от обобщённых координат…