• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Магнитоупругий датчик

    Магнитоупругий датчик, магнитострикционный датчик, измерительный преобразователь механических усилий (деформаций) или давления в электрический сигнал. Действие М. д. основано на использовании…



    Магнитофон

    Магнитофон (от магнит и греч. phone - звук), аппарат для магнитной записи и воспроизведения звука. По назначению и качественным показателям различают М. профессиональные - для синхронной (с…



    Магнитофонная приставка

    Магнитофонная приставка, магнитофон без оконечного усилителя звуковых частот и громкоговорителя. Посредством М. п. производится запись с микрофона, электропроигрывателя, радиоприёмника, но, в отличие…



    Магнитоэлектрическая машина

    Магнитоэлектрическая машина, электрическая машина постоянного или переменного тока, в которой магнитный поток создаётся постоянными магнитами (вращающимися или неподвижными). М. м. изготавливаются…



    Магнитоэлектрический прибор

    Магнитоэлектрический прибор измерительный, прибор непосредственной оценки для измерения силы электрического тока, напряжения или количества электричества в цепях постоянного тока. Подвижная часть…



    Магнит постоянный

    Магнит постоянный [греч. Magnetis, от Magnetis Líthos, буквально — камень из Магнесии (древний город в Малой Азии)], изделие определённой формы (в виде подковы, полосы и др.) из предварительно намагниченных ферромагнитных или ферримагнитных материалов, способных сохранять большую магнитную индукцию после устранения намагничивающего поля (так называемых магнитно-твёрдых материалов). М. п. широко применяются как автономные источники постоянного магнитного поля в электротехнике, радиотехнике, автоматике.

    Основные физические свойства М. п. определяются характером размагничивающей ветви петли магнитного гистерезиса материала, из которого М. п. изготовлен. Чем больше коэрцитивная сила Hcи остаточная магнитная индукция Br материала (рис.), то есть чем более магнитно-твёрдым является материал, тем лучше он подходит для М. п. Индукция в М. п. может равняться наибольшей остаточной индукции Br лишь в том случае, если он представляет собой замкнутый магнитопровод. Обычно же М. п. служит для создания магнитного потока в воздушном зазоре, например между полюсами подковообразного магнита. Воздушный зазор уменьшает индукцию (и намагниченность) М. п.; влияние зазора подобно действию некоторого внешнего размагничивающего поля Hd. Значение поля Hd, уменьшающего остаточную индукцию Br до значения Bd (см. рис.), определяется конфигурацией М. п. (см. Размагничивающий фактор). Таким образом, при помощи М. п. могут быть созданы магнитные поля, индукция которых В £ Вr. Действие М. п. наиболее эффективно в том случае, если состояние магнита соответствует точке кривой размагничивания, где максимально значение (BH) max, то есть максимальна магнитная энергия единицы объёма материала. К числу материалов, из которых изготовляют М. п., относятся сплавы на основе Fe, Со, Ni, Al (см. Ални сплавы), гексагональные ферриты и др. К новейшим, наиболее эффективным материалам для М. п. относятся ферримагнитные интерметаллические соединения редкоземельных металлов Sm и Nd с Co (типа SmCo5). Эти соединения обладают рекордно высокой величиной(BH) max (см. таблицу).

    Основные характеристики материалов для постоянных магнитов (данные усреднены)

    Материал

    Hc, э

    Br, гс

    (BH) max, 106 гс·э

    Дата первого применения

    Углеродистая сталь

    50

    10000

    0,26

    1880

    Кобальтовая сталь

    240

    9200

    0,9

    1917

    Сплав Fe – Ni – Al

    480

    6100

    1,05

    1933

    Бариевый гексагональный феррит

    1800

    2000

    0,9

    1952

    Сплав Pt – Co

    4300

    6500

    9,5

    1958

    Соединение SmCo5

    9500

    9000

    20,0

    1968

    Важным условием для достижения наивысших магнитных характеристик М. п. является его предварительное намагничивание до состояния магнитного насыщения. Другое важное требование — неизменность магнитных свойств со временем, отсутствие магнитного старения. М. п. изготовленные из материалов, склонных к магнитному старению, подвергают специальным обработкам (термической, переменным магнитным полем и другим), стабилизирующим состояние магнитов (см. Старение магнитное).

    Лит.: Займовский А. С., Чудновская Л. А., Магнитные материалы, [3 изд.]. М. — Л., 1957; Бозорт Р., Ферромагнетизм, перевод с английского, М., 1956; Смит Я., Вейн Х., Ферриты, перевод с английского, М., 1962: Постоянные магниты. Справочник, перевод с английского, М. — Л., 1963; Рабкин Л. И., Соскин С. А., Эпштейн Б. Ш., Ферриты, Л., 1968; Белов К. П., Редкоземельные магнитные материалы, "Успехи физических наук", 1972, т. 106, в. 2.

    К. П. Белов.

     

    Гистерезис

    Гистерезис (от греч. hysteresis - отставание, запаздывание), явление, которое состоит в том, что физическая величина, характеризующая состояние тела (например, намагниченность), неоднозначно зависит…

    Коэрцитивная сила

    Коэрцитивная сила, коэрцитивное поле (от лат. соёrcitio - удерживание), одна из характеристик явления гистерезиса. В магнитном гистерезисе К. с. - это напряжённость Hc магнитного поля, в котором…

    Размагничивающий фактор

    Размагничивающий фактор, размагничивания коэффициент. При намагничивании во внешнем поле образца или детали из ферромагнитного материала разомкнутой формы (например, цилиндра) на его краях образуются…

    Ални сплавы

    Ални сплавы, сплавы на основе системы железо (Fe) - никель (Ni) - алюминий (Al), обладающие высокими магнитными свойствами. Технические сплавы содержат 20 - 34% Ni и 11-18% Al. С увеличением…

    Магнитное насыщение

    Магнитное насыщение, состояние парамагнетика или ферромагнетика, при котором его намагниченность J достигает предельного значения J$ -намагниченности насыщения, не меняющейся при дальнейшем увеличении…

    Старение магнитное

    Старение магнитное, изменение магнитных свойств ферромагнетика со временем. С. м. может быть вызвано изменением доменной структуры ферромагнетика (обратимое С. м.) или его кристаллической структуры (…