• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Магнитное поле Земли

    Магнитное поле Земли, см. в статье Земной магнетизм…



    Магнитное последействие

    Магнитное последействие, то же, что магнитная вязкость…



    Магнитное сопротивление

    Магнитное сопротивление, характеристика магнитной цепи, М. с. Rm равно отношению магнитодвижущей силыF, действующей в магнитной цепи, к созданному в цепи магнитному потоку Ф. М. с. однородного участка…



    Магнитно-жёсткие материалы

    Магнитно-жёсткие материалы, то же, что магнитно-твёрдые материалы…



    Магнитно-мягкие материалы

    Магнитно-мягкие материалы, магнитные материалы, которые намагничиваются до насыщения и перемагничиваются в относительно слабых магнитных полях напряжённостью Н ~ 8-800 а/м (0,1-10 э). При температурах…



    Магнитно-твёрдые материалы

    Магнитно-твёрдые материалы, магнитно-жёсткие (высококоэрцитивные) материалы, магнитные материалы, которые намагничиваются до насыщения и перемагничиваются в сравнительно сильных магнитных полях напряжённостью в тысячи и десятки тысяч а/м (102—103 э). М.-т. м. характеризуются высокими значениями коэрцитивной силы Hc, остаточной индукции Br, магнитной энергии (BH) maxна участке размагничивания — спинке петли гистерезиса (см. таблицу). После намагничивания М.-т. м. остаются магнитами постоянными из-за высоких значений Br и Hc. Большая коэрцитивная сила М.-т. м. может быть обусловлена следующими причинами: 1) задержкой смещения границ доменов благодаря наличию посторонних включений или сильной деформации кристаллической решётки; 2) выпадением в слабомагнитной матрице мелких однодоменных ферромагнитных частиц, имеющих или сильную кристаллическую анизотропию, или анизотропию формы.

    М.-т. м классифицируют по разным признакам, например, по физической природе коэрцитивной силы, по технологическим признакам и другим. Из М.-т. м. наибольшее значение в технике приобрели: литые и порошковые (недеформируемые) магнитные материалы типа Fe — Al — Ni — Со; деформируемые сплавы типа Fe — Со — Mo, Fe — Со — V, Pt — Со; ферриты (гексаферриты и кобальтовый феррит). В качестве М.-т. м. используются также соединения редкоземельных элементов (особенно лёгких) с кобальтом; магнитопласты и магнитоэласты из порошков ални, альнико, ферритов со связкой из пластмасс и резины (см. Магнитодиэлектрики), материалы из порошков Fe, Fe — Со, Mn — Bi, SmCo5.

    Высокая коэрцитивная сила литых и порошковых М.-т. м (к ним относятся материалы типа альнико, магнико и другие) объясняется наличием мелкодисперсных сильномагнитных частиц вытянутой формы в слабомагнитной матрице. Охлаждение в магнитном поле приводит к предпочтительной ориентации у этих частиц их продольных осей. Повышенными магнитными свойствами обладают подобные М.-т. м., представляющие собой монокристаллы или сплавы, созданные путём направленной кристаллизации [их максимальная магнитная энергия (BH) max достигает 107 гс·э]. М.-т. м. типа Fe — Al — Ni — Со очень тверды, обрабатываются только абразивным инструментом или электроискровым методом, при высоких температурах их можно изгибать. Изделия из таких М.-т. м. изготавливаются фасонным литьём или металлокерамическим способом.

    Деформируемые сплавы (важнейшие из них — комолы и викаллои) более пластичны и значительно легче поддаются механической обработке. Дисперсионно-твердеющие сплавы типа Fe — Со — Mo (комолы) приобретают высококоэрцитивное состояние (магнитную твёрдость) в результате отпуска после закалки, при котором происходит распад твёрдого раствора и выделяется фаза, богатая молибденом. Сплавы типа Fe — Со — V (викаллои) для придания им свойств М.-т. м, подвергают холодной пластической деформации с большим обжатием и последующему отпуску. Высококоэрцитивное состояние сплавов типа Pt — Со возникает за счёт появления упорядоченной тетрагональной фазы с энергией анизотропии 5·107 эрг/см3. Из литых, порошковых и деформируемых М.-т. м. изготавливают постоянные магниты, используемые в измерительных приборах (например, амперметрах и вольтметрах постоянного тока), в микродвигателях и гистерезисных электрических двигателях, в часовых механизмах и др. К М.-т. м. относятся гексаферриты, то есть ферриты с гексагональной кристаллической решёткой (например, BaO·6Fe2O3, SrO·6Fe2O3). Кроме гексаферритов, в качестве М.-т. м. применяется феррит кобальта CoO·Fe2O3 со структурой шпинели, в котором после термической обработки в магнитном поле формируется одноосевая анизотропия, что и является причиной его высокой коэрцитивной силы. Магнитно-твёрдые ферриты применяются для работы в условиях рассеянных магнитных полей и в СВЧ-диапазоне. Изделия из ферритов изготовляют методами порошковой металлургии.

    Основные характеристики важнейших магнито-твердых материалов

    Марка материала

    Основной состав, % (по массе)

    Br·10–3, гс

    Hc, э

    (BH) max, Мгс·э

    У13

    1,3C, ост. Fe

    8

    60

    0,22

    Е7В6

    0,7C, 0,4Cr, 5,7W, 0,4Si, ост. Fe

    10,4

    68

    0,36

    ЕХ9К15М

    1C, 9Cr, 15Co, 1,5Mo, ост. Fe

    8,2

    160

    0,55

    12КМВ12 (комол)

    12Co, 6Mo, 12W, ост. Fe

    10,5

    250

    1,1

    ЮНД4 (ални)

    25Ni, 12Al, 4Cu, ост. Fe

    6,1

    500

    0,9

    ЮНДК24 (магнико)

    14Ni, 8Al, 24Co, 3Cu, ост. Fe

    12,3

    600

    4

    ЮНДК35Т5ВА (тиконал)

    14Ni, 8Al, 35Co, 3Cu, 5Ti, Nb<1

    10

    1500

    10

    ПлК 76 (платинакс)

    76Pt, ост. Co

    7,9

    4000

    12

    52КФ (викаллой)

    52Co, 13V, ост. Fe

    6

    500

    2ФК (Co феррит)

    CoO·Fe2O3

    3

    1800

    2

    1БИ (Ba феррит)

    BaO·6Fe2O3 (изотропный)

    2

    1700

    1

    3БА (Ba феррит)

    BaO·6Fe2O3 (анизотропный)

    3,7

    2000

    3,2

    3СА (Sr феррит)

    SrO·6Fe2O3 (анизотропный)

    3,6

    3200

    3

    Co5Sm

    Co5Sm (анизотропный)

    9,4

    BHc=8500

    21

    Лит. см. при ст. Магнитные материалы.

    И. М. Пузей.

     

    Магнитные материалы

    Магнитные материалы, вещества, существенно изменяющие значение магнитного поля, в которое они помещены. Ещё в древности был известен природный намагниченный минерал магнетит, из которого в Китае…

    Коэрцитивная сила

    Коэрцитивная сила, коэрцитивное поле (от лат. соёrcitio - удерживание), одна из характеристик явления гистерезиса. В магнитном гистерезисе К. с. - это напряжённость Hc магнитного поля, в котором…

    Гистерезис

    Гистерезис (от греч. hysteresis - отставание, запаздывание), явление, которое состоит в том, что физическая величина, характеризующая состояние тела (например, намагниченность), неоднозначно зависит…

    Магнит постоянный

    Магнит постоянный [греч. Magnetis, от Magnetis Lithos, буквально - камень из Магнесии (древний город в Малой Азии)], изделие определённой формы (в виде подковы, полосы и др.) из предварительно…

    Домены

    Домены, 1) ферромагнитные Д. (области самопроизвольной намагниченности) - намагниченные до насыщения части объёма ферромагнетика (обычно имеющие линейные размеры ~10-3-10-2см), на которые он…

    Ферриты

    Ферриты, химические соединения окиси железа Fe2O3 с окислами других металлов. У многих Ф. сочетаются высокая намагниченность и полупроводниковые или диэлектрические свойства, благодаря чему они…

    Магнитодиэлектрики

    Магнитодиэлектрики, магнитные материалы, представляющие собой связанную в единый конгломерат смесь ферромагнитного порошка и связки - диэлектрика (например, бакелита, полистирола, резины); в…

    Кристаллизация

    Кристаллизация, образование кристаллов из паров, растворов, расплавов, вещества в твёрдом состоянии (аморфном или другом кристаллическом), в процессе электролиза и при химических реакциях. К. приводит…

    Шпинели

    Шпинели (нем. Spinell), шпинелиды, группа минералов класса сложных окислов с общей формулой AB2O4 или А (А, В) О4, где A-Mg, Zn, Mn, Fe2+, Co, Ni; B-Al, Fe3+, Cr, Mn, Ti4+,V3+. Ш. представляют собой…

    Порошковая металлургия

    Порошковая металлургия, область техники, охватывающая совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них (или их смесей с…

    Магнитные материалы

    Магнитные материалы, вещества, существенно изменяющие значение магнитного поля, в которое они помещены. Ещё в древности был известен природный намагниченный минерал магнетит, из которого в Китае…