• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Лаздину Пеледа

    Лаздину Пеледа, общий псевдоним двух литовских писательниц-сестёр - Софии Иванаускайте-Пшибиляускене [4(16).9.1867, Парагяй, ныне Акмянского района Литовской ССР, - 15.3.1926. там же] и Марии…



    Лаздияй

    Лаздияй, город, центр Лаздийского района Литовской ССР. Расположен на Ю. республики, в 15 км к Ю. от ж.-д. станции Шештокай. Лесопильный и маслодельный заводы. Основан в 1587…



    Лазенки

    Лазенки (Lazienki), дворцово-парковый ансамбль в Варшаве, памятник раннего классицизма. Бывшая королевская резиденция; ныне - музей. Отличается строгими (несмотря на черты барокко)формами и камерными…



    Лазер

    Лазер, источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных букв (…



    Лазерная технология

    Лазерная технология, процессы обработки и сварки материалов излучением лазеров. В Л. т. применяют твердотельные и газовые лазеры импульсного и непрерывного действия. В большинстве процессов Л. т…



    Лазерное излучение

    Лазерное излучение (действие на вещество). Высокая мощность Л. и. в сочетании с высокой направленностью позволяет получать с помощью фокусировки световые потоки огромной интенсивности. Наибольшие мощности излучения получены с помощью твердотельных лазеров на стекле с примесью Nd с длиной волны излучения l = 1,06 мкм и в газовых CO2 — лазерах с l = 10,6 мкм (см. табл.).   Лазер

    Длительность импульса, сек

    Энергия импульса, дж

     

    Мощность, вт

    Максимальная плотность потока излучения, вт/см2

    CO2

    Nd + стекло

    CO2

    Nd + стекло

    Nd + стекло

    Непрерывный

    10-3

    6 × 10-8

    10-9

    (0,3) 10-11

    104

    3 × 102

    3 × 102

    10—20

    103

    107

    5 × 1019

    3 × 1011

    1012—1013

    до 107

    до 107—1011

    1013

    1016

    1015—1016

     

    Особенности Л. и. привели к открытию целого ряда новых физических явлений, круг которых быстро расширяется по мере увеличения мощности лазеров.

    Развитое испарение металлов. При воздействии на металлы Л. и. (например, импульсов неодимового лазера, длительностью несколько мсек) с плотностью потока излучения 106—108 вт/см2 металл в зоне облучения разрушается и на поверхности мишени возникает характерный кратер. Вблизи мишени наблюдается яркое свечение плазменного факела, представляющего собой движущийся пар, нагретый и ионизированный Л. и. Реактивное давление пара, выбрасываемого с поверхности металла, сообщает мишени импульс отдачи (рис. 1).

    Испарение происходит с поверхности тонкого слоя жидкого металла, нагретого до температуры в несколько тыс. градусов. Температура слоя определяется равенством поглощённой энергии и потерь на охлаждение, связанное с испарением. Роль теплопроводности в охлаждении слоя при этом несущественна. В отличие от обычного испарения, такой процесс называется развитым испарением.

    Давление в слое определяется силой отдачи пара и в случае сформировавшегося газодинамического течения пара от мишени составляет 1/2 давления насыщенного пара при температуре поверхности. Т. о., жидкий слой является перегретым, его состояние метастабильным. Это позволяет исследовать условия предельного перегрева металлов, при достижении которых происходит бурное объёмное вскипание жидкости. При нагреве до температуры, близкой к критической, в жидком слое металла может происходить скачкообразное уменьшение электропроводности и он приобретает свойства диэлектрика. При этом наблюдается скачкообразное уменьшение коэффициента отражения света.

    Облучение твёрдых мишеней. При облучении практически всех твёрдых мишеней миллисекундными импульсами Л. и. с плотностью потока излучения ~ 107—109 вт/см2 в потоке пара от испаряющеися мишени, как и в предыдущем случае, образуется плазма. Температура плазмы 104—105 К. Таким методом возможно получение значительного количества химически чистой плотной низкотемпературной плазмы для заполнения магнитных ловушек и для разного рода технологических целей. Испарение твёрдых мишеней под действием Л. и. широко используется в технике (см. Лазерная технология).

    При фокусировке на твёрдую мишень наносекундных лазерных импульсов с плотностью потока излучения 1012—1014 вт/см2 поглощающий слой вещества разогревается так сильно, что сразу превращается в плазму. В этом случае уже нельзя говорить об испарении мишени, границе раздела фаз и т.п. Энергия Л. и. расходуется на нагревание плазмы и продвижение фронта разрушения и ионизации в глубь мишени. Температура плазмы оказывается столь высокой, что в ней образуются многозарядные ионы, в частности Са16+ и др. (рис. 2). Образование ионов такой высокой кратности ионизации до недавнего времени наблюдалось только в излучении солнечной короны. Образование ионов с почти ободранной электронной оболочкой интересно также с точки зрения возможности осуществления в ускорителях многозарядных ионов ядерных реакций на тяжёлых ядрах.

    Лазерная искра (оптический пробой газа). При фокусировке в воздухе при атмосферном давлении лазерного луча с плотностью потока излучения ~ 1011 вт/см2 в фокусе линзы наблюдается яркая световая вспышка (рис. 3) и сильный звук. Это явление называется лазерной искрой. Длительность вспышки в 10 и более раз превосходит длительность лазерного импульса (30 нсек). Образование лазерной искры можно представить себе состоящим из 2 стадий: 1) образование в фокусе линзы первичной (затравочной) плазмы, обеспечивающей сильное поглощение Л. и.; 2) распространение плазмы вдоль луча в области фокуса. Механизм образования затравочной плазмы аналогичен высокочастотному пробою газов. Отсюда термин — оптический пробой газа. Для пикосекундных импульсов Л. и. (I~ 1013—1014 вт/см2) образование затравочной плазмы обусловлено также многофотонной ионизацией (см. Многофотонные процессы). Нагревание затравочной плазмы Л. и. и её распространение вдоль луча (навстречу лучу) обусловлено несколькими процессами, одним из которых является распространение от затравочной плазмы сильной ударной волны. Ударная волна за своим фронтом нагревает и ионизирует газ, что, в свою очередь, приводит к поглощению Л. и., т. е. к поддержанию самой ударной волны и плазмы вдоль луча (световая детонация). В др. направлениях ударная волна быстро затухает.

    Т. к. время жизни плазмы, образованной Л. и., значительно превышает длительность лазерного импульса, то на больших расстояниях от фокуса лазерную искру можно рассматривать как точечный взрыв (почти мгновенное выделение энергии в точке). Это объясняет, в частности, высокую интенсивность звука. Лазерная искра исследована для ряда газов при различных давлениях, разных условиях фокусировки, разных длинах волн Л. и. при длительностях импульсов от 10-6 до 10-11 сек.

    Лазерную искру можно наблюдать и при значительно меньших интенсивностях, если затравочная поглощающая плазма в фокусе линзы создаётся заранее. Например, в воздухе при атмосферном давлении лазерная искра развивается из электроразрядной затравочной плазмы, при интенсивности Л. и. ~ 107 вт/см2, Л. и. "подхватывает" электроразрядную плазму и за время лазерного импульса свечение распространяется вдоль каустической поверхности линзы. При относительно малой интенсивности Л. и. распространение плазмы обусловлено теплопроводностью, в результате чего скорость распространения плазмы — дозвуковая. Этот процесс аналогичен медленному горению, отсюда термин "лазерная искра в режиме медленного горения".

    Стационарное поддержание лазерной искры было осуществлено в различных газах с помощью непрерывного СО2-лазера мощностью в несколько сотен вт. Затравочная плазма создавалась импульсным СО2-лазером.

    Термоядерный синтез. С помощью Л. и. возможно осуществление реакции термоядерного синтеза. Для этого необходимо образование чрезвычайно плотной и горячей плазмы с температурой, в случае синтеза ядер дейтерия, ~ 108 К. Для того чтобы энерговыделение в результате реакции превышало энергию, вложенную в плазму при её нагреве, необходимо выполнение условия:

    nt ³ 1014 см-3сек,

    где n — плотность плазмы, t — время её существования. Для коротких лазерных импульсов это условие выполняется при очень высоких плотностях плазмы. При этом давление в плазме столь велико, что её магнитное удержание практически невозможно. Возникающая вблизи фокуса плазма разлетается со скоростью ~ 108 см/сек. Поэтому t — время, за которое сгусток плотной плазмы ещё не успевает существенно изменить свой объём (время инерционного удержания плазмы). Для осуществления термоядерного синтеза длительность лазерного импульса tл, очевидно, не должна превышать t. Минимальная энергия лазерного импульса E при плотности плазмы n = 5×1022 см-3 (плотность жидкого водорода), времени удержания t = 2×10-9 сек и линейных размерах плазменного сгустка 0,4 см должна составлять: E = 6×105 дж. Однако эффективное поглощение света плазмой в условиях её инерционного удержания и выполнение условия nt ~ 10-14 имеет место лишь для определённых длин волн l:

    lкр > l > (lкр/ ),

    где lкр — критическая длина волны для плазмы с плотностью n (см. Плазма). При n = 5×1022 см-3 l лежит в ультрафиолетовой области спектра, для которой пока не существует мощных лазеров. В то же время при l = 1 мкм (неодимовый лазер) даже для n = 1021 см-3, соответствующей lкр, получается трудно осуществимое значение минимальной энергии E = 109 дж. Трудность ввода энергии Л. и. видимого и инфракрасного диапазонов в плотную плазму является фундаментальной. Существуют различные идеи относительно её преодоления, среди которых представляет интерес получение сверхплотной горячей плазмы в результате адиабатического сжатия сферической дейтериевой мишени реактивным давлением плазмы, выбрасываемой с поверхности мишени под действием Л. и.

    Впервые высокотемпературный нагрев плазмы Л. и. был осуществлен при оптическом пробое воздуха. В 1966—67 при плотности потока Л. и. ~ 1012—1013 вт/см2 было зафиксировано рентгеновское излучение от плазмы лазерной искры, имеющей температуру ~ 1—3×106 К. В 1971 при облучении твёрдой сферической водородосодержащей мишени Л. и. с плотностью потока до 1016 вт/см2 была получена плазма с температурой (измеренной по рентгеновскому излучению) 107 К. При этом наблюдался выход 106 нейтронов за импульс. Полученные результаты, а также имеющиеся возможности увеличения энергии и мощности лазеров создают перспективу получения с помощью Л. и. управляемой термоядерной реакции.

    Химия резонансно-возбуждённых молекул. Под действием монохроматического Л. и. возможно селективное воздействие на химические связи молекул, что позволяет избирательно вмешиваться в химические реакции синтеза, диссоциации и процессы катализа. Многие химические реакции сводятся к разрушению одних химических связей в молекулах и созданию других. Связи между атомами обусловливают колебательный спектр молекулы. Частоты линий этого спектра зависят от энергии связи и массы атомов. Под действием монохроматического Л. и. резонансной частоты отдельная связь может быть "раскачана". Такая связь легко может быть разрушена и заменена другой. Поэтому колебательно возбуждённые молекулы оказываются химически более активными (рис. 4).

    С помощью Л. и. можно осуществить разделение молекул с разным изотопным составом. Эта возможность связана с зависимостью частоты колебаний атомов, составляющих молекулу, от массы атомов. Монохроматичность и высокая мощность Л. и. позволяют избирательно возбуждать на преддиссоциационный уровень молекулы только одного изотопного состава и получать в продуктах диссоциации химические соединения моноизотопического состава или сам изотоп. Т. к. число диссоциированных молекул данного изотопного состава равно числу поглощённых квантов, то эффективность метода по сравнению с другими методами изотопов разделения может быть высокой.

    Перечисленные эффекты не исчерпывают всех физических явлений, обусловленных действием Л. и. на вещество. Прозрачные диэлектрики разрушаются под действием Л. и. При облучении некоторых ферромагнитных плёнок наблюдаются локальные изменения их магнитного состояния, что может быть использовано при создании быстродействующих переключающих устройств и элементов памяти ЭВМ. При фокусировке Л. и. внутри жидкости имеет место так называемый светогидравлический эффект, позволяющий создавать в жидкости высокие импульсные давления. Наконец, при плотностях потока излучения ~ 1018—1019 вт/см2 возможно ускорение электронов до релятивистских энергий. С этим связан целый ряд новых эффектов, например рождение электронно-позитронных пар.

    Лит.: Райзер Ю. П., Пробой и нагревание газов под действием лазерного луча, "Успехи физических наук", 1965, т. 87, в. 1, с. 29; Квантовая электроника. Маленькая энциклопедия, М., 1969; Действия излучения большой мощности на металлы, под ред. А. М. Бонч-Бруевича и М. А. Ельяшевича, М., 1970; Басов Н. Г., Крохин О. Н., Крюков П. Г., Лазеры и управляемая термоядерная реакция, "Природа", 1971, № 1; Действие лазерного излучения. Сб. ст., пер. с англ., под ред. Ю. П. Райзера, М., 1968; Басов Н. Г. [и др.], Лазеры в химии, "Природа", 1973, № 5.

    В. Б. Федоров, С. Л. Шапиро.

    Лазерное излучение в биологии. Почти одновременно с созданием первых лазеров началось изучение биологического действия Л. и. Некоторые возможные биолого-медицинские аспекты его использования были намечены Ч. Таунсом (1962). В последующем оказалось, что возможная сфера применения Л. и. шире. Биолого-медицинские эффекты Л. и. связаны не только с высокой плотностью потока излучения и возможностью фокусировки луча на самых малых площадях, но, по-видимому, и с др. его характеристиками (монохроматичностью, длиной волны, когерентностью, степенью поляризации), а также с режимом излучения. Один из важных вопросов при использовании Л. и. в биологии и медицине — дозиметрия Л. и. Определение энергии, поглощённой единицей массы биообъекта, связано с большими трудностями. Различные ткани неодинаково поглощают и отражают Л. и. Кроме того, Л. и. в разных областях спектра оказывает не одинаковое, а подчас и антагонистическое действие на биообъект. Поэтому и невозможно ввести при оценке эффекта Л. и. коэффициент качества. Характер эффекта Л. и. определяется прежде всего его интенсивностью, или плотностью потока излучения. В случае импульсных излучателей важны также длительность импульсов и частота их следования. Из-за избирательности поглощения Л. и. биологическая эффективность может не соответствовать энергетическим характеристикам Л. и. Условно различают термические и нетермические эффекты Л. и.; переход от нетермических к термическим эффектам лежит в диапазоне 0,5—1 вт/см2. При плотностях потока излучения, превышающих указанные, происходит поглощение Л. и. молекулами воды, что приводит к их испарению и последующей коагуляции молекул белка. Наблюдаемые при этом структурные изменения аналогичны результатам обычного термического воздействия. Однако Л. и. обеспечивает строгую локализацию поражения, чему способствует сильная обводнённость биообъекта и поглощение рассеивающейся энергии в пограничных областях, смежных с облучаемой. При импульсных термических воздействиях ввиду очень короткого времени воздействия и быстрого испарения воды наблюдается так называемый взрывной эффект: возникает султан выброса, состоящий из частиц ткани и паров воды; этому сопутствует возникновение ударной волны, воздействующей на организм в целом.

    Л. и. с меньшей плотностью потока излучения вызывает в биообъекте изменения, механизм которых не полностью выяснен. Это сдвиг в активности ферментов, структуре пигментов, нуклеиновых кислот и др. важных в биологическом отношении веществ. Нетермические эффекты Л. и. вызывают сложный комплекс вторичных физиологических изменений в организме, чему, возможно, способствуют резонансные явления, протекающие в биосубстрате на молекулярном уровне. Нетермические эффекты Л. и. сопровождаются реакциями со стороны нервной, кровеносной и др. систем организма. Избирательность поглощения Л. и. и возможность фокусирования луча на площадях порядка 1 мкм2 особенно заинтересовали исследователей внутриклеточных структур и процессов, использующих Л. и. в качестве "скальпеля", позволяющего избирательно разрушать ядро, митохондрии или др. органеллы клетки без её гибели. Как при термических, так и при нетермических воздействиях Л. и. наиболее выраженной способностью к его поглощению обладают пигментированные ткани. Прижизненное окрашивание специфическими красителями позволяет разрушать и прозрачные для данного Л. и. структуры. В установках для внутриклеточных воздействий используют Л. и. с длиной волны как видимого спектра, так и ультрафиолетового и инфракрасного диапазонов, в непрерывном и импульсном режимах.

    Фотографирование биообъектов в Л. и. с целью получения пространственного изображения клеток и тканей стало возможным с созданием лазерных голографических установок для микрофотографирования. В связи с возможностью концентрации энергии Л. и. на очень малых площадях открылись новые возможности для спектрального ультрамикроанализа отдельных участков клетки, жизнедеятельность которой при этом временно сохраняется. С этой целью коротким импульсом Л. и. вызывают испарение вещества с поверхности исследуемого объекта и в газообразном виде подвергают спектральному анализу. Масса образца при этом не превышает долей мкг.

    Установлено, что ряд физиологических изменений происходит в организме животных под действием излучения гелий-неоновых лазеров малой мощности. При этом отмечаются стимуляция кроветворения, регенерация соединительной ткани, сдвиги артериального давления, изменения проводимости нервного волокна и др. Как при непосредственном облучении гелий-неоновыми лазерами растительных тканей, так и при предпосевном облучении семян выявлено стимулирующее влияние Л. и. на ряд биохимических процессов, рост и развитие растений.

    Н. Н. Шуйский.

    Лазерное излучение в медицине. Медицинское применение Л. и. обусловлено как термическими, так и нетермическими эффектами. В хирургии Л. и. используют в качестве "светового скальпеля". Его преимущества — стерильность и бескровность операции, а также возможность варьирования ширины разреза. Бескровность операции связана с коагуляцией белковых молекул и закупоркой сосудов по ходу луча. Этот эффект отмечается даже при операциях на таких органах, как печень, селезёнка, почки и др. По мнению ряда исследователей, послеоперационное заживление при лазерной хирургии идёт скорее, чем после применения электрокоагуляторов. К недостаткам лазерной хирургии следует отнести некоторую ограниченность движений хирурга в операционном поле даже при использовании светопроводов различной конструкции. В качестве "светового скальпеля" наиболее широко применяют СО2-лазеры с длиной волны 10 590 и мощностью от нескольких вт до нескольких десятков вт.

    В офтальмологии с помощью лазерного луча лечат отслоение сетчатки, разрушают внутриглазные опухоли, формируют зрачок. На основе рубинового лазера сконструирован офтальмокоагулятор.

    При использовании Л. и. в онкологии для удаления поверхностных опухолей (до глубины 3—4 см) чаще применяют импульсные лазеры или лазеры на стекле с примесью Nd с мощностью импульса до 1500 вт. Разрушение опухоли происходит почти мгновенно и сопровождается интенсивным парообразованием и выбросом ткани из области облучения в виде султана. Чтобы предупредить разбрасывание злокачественных клеток в результате "взрывного" эффекта, применяют воздушные отсосы. Операции с применением Л. и. обеспечивают хороший косметический эффект. Перспективы использования лазерного "скальпеля" в нейрохирургии связаны с операциями на обнажённом мозге.

    Терапия Л. и. основана преимущественно на нетермических эффектах и представляет собой светотерапию с использованием в качестве источников монохроматического излучения гелий-неоновых лазеров с длиной волны 6328 Терапевтическое воздействие на организм осуществляется Л. и. с плотностью облучения в несколько мвт/см2, что полностью исключает возможность проявления теплового эффекта. На пораженный орган или участок тела воздействуют как местно, так и через соответствующие рефлексогенные зоны и точки (см. Иглотерапия). Л. и. применяют при лечении длительно незаживающих язв и ран; изучается возможность его применения и при др. заболеваниях (ревматоидный полиартрит, бронхиальная астма, некоторые гинекологические заболевания и т.д.). Соединение лазера с волоконной оптикой позволяет резко расширить возможности его применения в медицине. По гибкому светопроводу Л. и. достигает полостей и органов, что позволяет провести голографическое исследование (см. Голография), а при необходимости и облучение пораженного участка. Исследуется возможность просвечивания и фотографирования с помощью Л. и. структуры зубов, состояния сосудов и др. тканей.

    Работа с Л. и. требует строгого соблюдения соответствующих правил техники безопасности. Прежде всего необходима защита глаз. Эффективны, например, теневые защитные устройства. Следует оберегать от поражения Л. и. кожные покровы, особенно пигментированные участки. Для защиты от поражения отражённым Л. и. с возможного пути луча удаляют блестящие (зеркальные) поверхности. Предположения о возможности возникновения ионизирующего излучения при работе высокоинтенсивных лазеров не подтвердились.

    В. А. Думчев, Н. Н. Шуйский.

    Лит.: Файн С., Клейн Э., Биологическое действие излучения лазера, пер. с англ., М., 1968; Лазеры в биологии и медицине, К., 1969; Гамалея Н. Ф., Лазеры в эксперименте и клинике, М., 1972; Некоторые вопросы биодинамики и биоэлектроники организма в норме и патологии, биостимуляция лазерным излучением. (Материалы Республиканской конференции 11—13 мая 1972 г.), А.-А., 1972.

     

    Лазер

    Лазер, источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул. Слово "лазер" составлено из начальных букв (…

    Диэлектрики

    Диэлектрики, вещества, плохо проводящие электрический ток. Термин "Д." (от греч. dia - через и англ. electric - электрический) введён М. Фарадеем для обозначения веществ, через которые проникают…

    Плазма

    Плазма (от греч. plasma - вылепленное, оформленное), частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном…

    Магнитные ловушки

    Магнитные ловушки, конфигурации магнитного поля, способные длительное время удерживать заряженные частицы внутри определённого объёма пространства. М. л. природного происхождения является магнитное…

    Лазерная технология

    Лазерная технология, процессы обработки и сварки материалов излучением лазеров. В Л. т. применяют твердотельные и газовые лазеры импульсного и непрерывного действия. В большинстве процессов Л. т…

    Солнечная корона

    Солнечная корона, внешняя, наиболее протяжённая оболочка Солнца (илл. см. при ст. Затмения). Во время полных солнечных затмений С. к. прослеживается до расстояний в несколько диаметров Солнца. В…

    Многофотонные процессы

    Многофотонные процессы, процессы взаимодействия электромагнитного излучения с веществом, сопровождающиеся поглощением или испусканием (или тем и другим) нескольких электромагнитных квантов (фотонов) в…

    Ударная волна

    Ударная волна, скачок уплотнения, распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит резкое увеличение плотности, давления и скорости вещества. У. в…

    Плазма

    Плазма (от греч. plasma - вылепленное, оформленное), частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном…

    Химическая связь

    Химическая связь, взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют Х. с. Валентность атома…

    Изотопов разделение

    Изотопов разделение, выделение чистых изотопов из смеси изотопов данного элемента или обогащение смеси отдельными изотопами. И. р. - важная проблема, имеющая большое научное и практическое значение. С…

    Таунс Чарлз

    Таунс (Townes) Чарлз (р. 28.7.1915, Гринвилл, Южная Каролина), американский физик. Учился в 1931-37 в Гринвилле, в 1937-39 в Калифорнийском технологическом институте. В 1939-48 работал в фирме "Белл…

    Светопровод

    Светопровод, то же, что световод…

    Иглотерапия

    Иглотерапия, иглоукалывание, иглорефлектотерапия, акупунктура, Чжень-Цзю-терапия, метод лечения введением в ткани организма специальных металлических игл различной длины в строго определённые точки на…

    Голография

    Голография (от греч. holos - весь, полный и ...графия), метод получения объёмного изображения объекта, основанный на интерференции волн. Идея Г. была впервые высказана Д. Габором (Великобритания, 1948…