• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Клюшников Виктор Петрович

    Клюшников Виктор Петрович [10(22).3.1841, с. Алексиановка Гжатского уезда Смоленской губернии,-7(19).11.1892, Петербург], русский писатель. В романе К. "Марево" (1864) в искажённом, клеветническом…



    Клюшников Иван Петрович

    Клюшников Иван Петрович [2(14).12.1811, хутор Криничный, ныне Тростянецкого района Сумской области,-16(28).2.1895, там же], русский писатель. Друг В. Г. Белинского, активный участник кружка Н. В…



    Клязьма

    Клязьма, река в Московской и Владимирской области РСФСР, частично протекает по их границе с Ивановской и Горьковской областью, левый приток р. Оки. Длина 686 км, площадь бассейна 42 500 км2. Берёт…



    Клястероспориоз

    Клястероспориоз, дырчатая пятнистость, болезнь плодовых косточковых деревьев, вызываемая несовершенным грибом Clasterosporium carpophilum. Поражает надземные органы растения. Проявляется в виде пятен…



    Клястицы

    Клястицы, село Россонского района Витебской области БССР (севернее г. Полоцка), в районе которого во время Отечественной войны 1812 18-20 июля (30 июля-1 августа) произошло сражение между русскими…



    К-мезоны

    К-мезоны, каоны, группа нестабильных элементарных частиц, в которую входят две заряженные (К+, К-) и две нейтральные (К0, ) частицы с нулевым спином и массой приблизительно в 970 раз большей, чем масса электрона. К.-м. участвуют в сильных взаимодействиях, т. е. являются адронами; они не имеют барионного заряда и обладают отличным от нуля значением квантового числа странности (S), характеризующей их поведение в процессах, обусловленных сильным взаимодействием: у К+ и К° S=+1, а у К- и (являющихся античастицами К+, К°) S = —1. Совместно с гиперонами К.-м. образуют группу так называемых странных частиц (частиц, для которых S ¹ 0).

    К+ и К° одинаковым образом участвуют в сильных взаимодействиях, имеют приблизительно одинаковые массы и различаются лишь электрическим зарядом. Они могут быть объединены в одну группу — так называемый изотопический дублет (см. Изотопическая инвариантность)и рассматриваются как различные зарядовые состояния одной и той же частицы с изотопическим спином I = 1/2. Аналогичную группу составляют и . Из-за различия в странности нейтральные К-м. К° и являются разными частицами, различным образом участвующими в сильных взаимодействиях.

    Согласно современной классификации элементарных частиц, К-м. (К+, К°, , ) вместе с p-мезонами (p+, p0, p-)и h0-мезоном входят в одну группу (октет) частиц, приблизительно одинаково участвующих в сильных взаимодействиях.

    Открытие К-мезонов связано с работами большого числа учёных в различных странах. В 1947—51 в космических лучах было открыто несколько частиц, массы которых, измеренные с доступной в то время точностью, были приблизительно одинаковыми, а способы распада — разными.

    Табл. 1.— Основные характеристики и способы распада К-мезонов

    Частица

    Масса m (Мэв)

    Странность S

    Время жизни t: (сек)

    Способы распада

    Вероятность распада (в %)

    К+

    К-

    494

    +1

    —1

    1,2-10-8

    m±+n

    p±+ p0

    p±+ p—+ p+

    p±+p0+p0

    m±+p0+n

    e±+p0+n

    e±+n

    64

    21

    5,57

    1,70

    3,18

    4,85

    1,2-10-5

    К0

    498

    +1

    —1

    Распады на ~50% по схеме K0s и на ~50% по схеме и на k0L (см. табл. 2).

    Табл. 2.— Основные способы распада K0s и k0L

    Частица

    Масса м

    Время жизни t (сек)

    Способы распада

    Вероятность распада (в %)

    K0s

    "mK0

    0,86-10-10

    p++ p—

    p0+p0

    68,7

    31,3

    k0L

    "mK0

    Разность масс:

    m kL — m Ks " 3-10-6 эв

    5,4-10-8

    p0+p0+p0

    p++p—+p0

    p±+m±+n

    p±+e±+n

    p++ p—

    p0+p0

    g+ g

    21,5

    12,6

    26,8

    38,8

    0,16

    0,12

    5-10-4

    Это были так называемые q-мезоны, распадающиеся на два пи-мезона, t-мезоны, распадающиеся на три p-мезона, и др. Значит. прогресс в изучении этих частиц начался с 1954, когда их удалось получать с помощью ускорителей заряженных частиц. Тщательные измерения масс и времён жизни показали, что во всех этих случаях наблюдались различные способы распада одних и тех же частиц, названных К-м.

    Открытие К-м. сыграло важную роль в физике элементарных частиц; оно помогло установить новую характеристику сильно взаимодействующих частиц (адронов) — странность и создать современную систематику адронов (см. Элементарные частицы). Изучение распадов К-м. дало первые сведения о несохранении в слабых взаимодействиях пространственной и зарядовой чётности, а также о нарушении комбинированной чётности (см. Чётность, Зарядовое сопряжение, Комбинированная инверсия).

    Сильные взаимодействия К-мезонов. Наличие у К-м. отличной от нуля странности S накладывает (из-за сохранения S в сильных взаимодействиях) характерный отпечаток на процессы сильных взаимодействий с участием К-м. Так, К+ и К0, имеющие S = +1, рождаются при столкновениях "нестранных" частиц — p-мезонов и нуклонов (протонов и нейтронов) — только совместно с гиперонами или , , имеющими отрицательное значение странности (см., например, в ст. Гипероны).

    Поскольку все гипероны имеют отрицательную странность, они легче рождаются в процессах, вызванных К— и , чем в процессах, вызванных К+ и К0. Например, возможна реакция + р ® L0 + p+, тогда как реакция К0 + р ® L0 + p + запрещена законом сохранения странности в сильных взаимодействиях (здесь р — протон, L0 — гиперон). Рождение гиперонов в пучках К+, К0 менее вероятно, т.к. оно требует появления совместно с гипероном нескольких дополнительных К+ или К0.

    Поэтому медленные К+, К0 слабее взаимодействуют с веществом, чем , .

    Слабые взаимодействия К-мезонов. Распады К-м. обусловлены слабым взаимодействием и происходят с изменением странности на 1 (в слабых взаимодействиях странность не сохраняется). Распады могут осуществляться различными способами и подчиняются эмпирическим правилам, определяющим изменение странности, изотопического спина адронов и пр. (см. Отбора правила). В распадах К-м. не сохраняются пространственная и зарядовая чётности, что проявляется, например., в возможности распада как на 2 p-, так и на 3 p-мезона.

    Рисунок иллюстрирует процессы сильного и слабого взаимодействия К-м.

    Специфические свойства нейтральных К-мезонов. Выше отмечалось, что К0- и -мезоны, отличаясь друг от друга значениями квантового числа странности, участвуют в процессах сильного взаимодействия как две различные частицы. Поскольку, однако, в процессах слабого взаимодействия, в частности в распадах К.-м., странность не сохраняется, оказываются возможными взаимные превращения K0 Û . Наличие таких переходов между частицей и античастицей, имеющими разные значения одного из квантовых чисел, характеризующих элементарные частицы, обусловливает специфические, уникальные свойства нейтральных К.-м. Для любых других частиц существование подобных переходов запрещено строгими законами сохранения электрического или барионного заряда (а также, по-видимому, и лептонного заряда для переходов нейтрино — антинейтрино).

    В вакууме благодаря переходам K0 Û состояниями, имеющими определённую энергию и время жизни, будут не К0 и , а две квантово-механических суперпозиции этих состояний. Эти суперпозиции соответствуют частицам с различными массами и различными временами жизни: долгоживущему K0L- и короткоживущему K0S-meзонам. Разность масс K0S и K0L обусловлена слабым взаимодействием, вызывающим переходы K0 Û , и весьма мала. Время жизни и способы распада K0S и K0L указаны в.

    Таким образом, в то время как в процессах, вызываемых сильным взаимодействием, проявляются состояния К0 и , обладающие определёнными значениями странности (сохраняющейся в сильном взаимодействии), в процессах слабого взаимодействия (в распадах) проявляются как частицы состояния K0L и K0S. Состояния K0L и K0S близки к суперпозициям состояний, которые называют K01 и K02:

    K0s " K01 = ,

    K0L " K02 = ,

    т. е. K0L и K0S приблизительно на 50% "состоят" из К0 и на 50% — из . Аналогичным образом можно утверждать, что К0 и приблизительно на 50% "состоят" из K0S и на 50% — из K0L тот факт, что состояния К0 и представляют суперпозицию двух состояний K0L и K0S разными массами и временами жизни, приводит к появлению своеобразных осцилляций ("биений"): К0, возникая в результате сильного взаимодействия, на некотором расстоянии от точки рождения частично превращается за счёт слабого взаимодействия в и потому оказывается способным вызывать ядерные реакции, характерные для и запрещенные для К0, например реакцию + р ® L0 + p + (эффект Пайса — Пиччони). Др. своеобразное явление — так называемая регенерация короткоживущих K0S-meзонов при прохождении через вещество долгоживущих K0L-meзонов: на достаточно больших расстояниях от места образования пучка К0 (или ) пучок состоит практически только из долгоживущих K0L, т.к. короткоживущие K0S распадаются раньше. Поэтому на таких расстояниях наблюдаются лишь распады, характерные для K0L (). Казалось бы, K0S не могут вновь появиться в пучке. Однако если пучок K0L пропустить через слой вещества, то из-за различия во взаимодействиях с веществом К0 и , составляющих K0L, изменяется относительный состав пучка и в пучке K0L появляется добавка K0S с характерными для K0S распадами.

    Комбинации K01 и К02 обладают определённой симметрией относительно операции комбинированной инверсии (СР): при переходе от частиц к античастицам (операция зарядового сопряжения С) с одновременным пространственным отражением (операция Р) волновая функция, соответствующая состоянию K01, остаётся неизменной, а волновая функция К02 меняет знак. Поэтому состояние K01 может распадаться на 2p (систему, обладающую теми же свойствами относительно операции СР, что и K01), a K02 не может. Поскольку вероятность распада на 2p значительно превышает вероятности др. способов (каналов) распада, большое различие во временах жизни долго- и короткоживущих К-м. считалось указанием на существование в природе симметрии относительно операции комбинированной инверсии, а состояния K0L и K0S отождествлялись с K01 и К02. Однако в 1964 было установлено, что долгоживущий К-м. с вероятностью приблизительно 0,2% распадается на 2p. Это свидетельствует о нарушении СР-симметрии и об отличии состояний K0L и K0S от K01 и К02. Природа сил, нарушающих СР-симметрию, ещё не выяснена. Имеющиеся эксперимент. данные не противоречат возможности существования в природе особого "сверхслабого" взаимодействия, нарушающего симметрию СР и проявляющегося в распадах нейтральных К-м.

    Лит.: Марков М. А., Гипероны и К-мезоны, М., 1958; Далиц P., Странные частицы и сильные взаимодействия, пер. с англ., М., 1964; Окунь Л. Б., Слабое взаимодействие элементарных частиц, М., 1963; Ли Ц. и By Ц., Слабые взаимодействия пер. с англ., М., 1968; Газиорович С., Физика элементарных частиц, пер. с англ. М., 1969; Эдер Р. К., Фаулер Э. К., Странные частицы, пер. с англ., М., 1966.

    С. С. Герштейн.

     

    Спин

    Спин (от англ. spin - вращаться, вертеться.), собственный момент количества движения элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. (При введении…

    Сильные взаимодействия

    Сильные взаимодействия, одноиз основных фундаментальных (элементарных) взаимодействий природы (наряду с электромагнитным, гравитационным и слабым взаимодействиями). Частицы, участвующие в С. в…

    Барионный заряд

    Барионный заряд, барионное число (символ B), одна из характеристик элементарных частиц, отличная от нуля для барионов и равная нулю для всех остальных частиц. Б. з. барионов полагают равным единице;…

    Странность

    Странность (S), аддитивное квантовое число, характеризующее сильно взаимодействующие элементарные частицы (адроны). Все адроны обладают определёнными целочисленными значениями 5 (нулевым…

    Античастицы

    Античастицы, группа элементарных частиц, имеющих те же значения масс и прочих физических характеристик, что и их "двойники" - частицы, но отличающихся от них знаком некоторых характеристик…

    Гипероны

    Гипероны (от греч. hyper - сверх, выше), тяжёлые нестабильные элементарные частицы с массой, большей массы нуклона (протона и нейтрона), обладающие барионным зарядом и большим временем жизни по…

    Изотопическая инвариантность

    Изотопическая инвариантность, свойство сильных взаuмoдействий элементарных частиц. Существующие в природе частицы, обладающие сильными взаимодействиями (адроны), можно разбить на группы "похожих"…

    Изотопический спин

    Изотопический спин, одна из характеристик сильно взаимодействующих частиц, определяющая (вместе с другими характеристиками - массой, спином, барионным зарядом) ее принадлежность к группе частиц с…

    Космические лучи

    Космические лучи, поток частиц высокой энергии, преимущественно протонов, приходящих на Землю из мирового пространства (первичное излучение), а также рожденное ими в атмосфере Земли в результате…

    Пи-мезоны

    Пи-мезоны, p-мезоны, пионы, группа из трёх нестабильных элементарных частиц - двух заряженных (p+ и p-) и одной нейтральной (p0); принадлежат к классу сильно взаимодействующих частиц (адронов) и…

    Ускорители заряженных частиц

    Ускорители заряженных частиц - устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного…

    Элементарные частицы

    Элементарные частицы. Введение. Э. ч. в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии "Э. ч." в современной физике…

    Слабые взаимодействия

    Слабые взаимодействия, один из четырёх типов известных фундаментальных взаимодействий между элементарными частицами (три других типа - электромагнитное, гравитационное и сильное). С. в. гораздо слабее…

    Чётность

    Чётность, квантовомеханическая характеристика состояния физической микрочастицы (молекулы, атома, атомного ядра, элементарной частицы), отображающая свойства симметрии этой микрочастицы относительно…

    Зарядовое сопряжение

    Зарядовое сопряжение, операция замены всех частиц, участвующих в каком-либо взаимодействии, на соответствующие им античастицы. Опыт показывает, что сильные взаимодействия и электромагнитные…

    Комбинированная инверсия

    Комбинированная инверсия (СР), операция сопоставления физической системе, состоящей из каких-либо частиц, другой системы, состоящей из соответствующих античастиц и представляющей зеркальное…

    Гипероны

    Гипероны (от греч. hyper - сверх, выше), тяжёлые нестабильные элементарные частицы с массой, большей массы нуклона (протона и нейтрона), обладающие барионным зарядом и большим временем жизни по…

    Отбора правила

    Отбора правила, правила, определяющие возможные квантовые переходы для атомов, молекул, атомных ядер, взаимодействующих элементарных частиц и др. О. п. устанавливают, какие квантовые переходы…

    Лептонный заряд

    Лептонный заряд, лептонное число, особое квантовое число, характеризующее лептоны. Опыт показывает, что при всех процессах разность между числами лептонов и их античастиц остаётся постоянной. Например…