• А
  • Б
  • В
  • Г
  • Д
  • Е
  • Ж
  • З
  • И
  • Й
  • К
  • Л
  • М
  • Н
  • О
  • П
  • Р
  • С
  • Т
  • У
  • Ф
  • Х
  • Ц
  • Ч
  • Ш
  • Щ
  • Ф
  • Э
  • Ю
  • Я
  • Абсорбция света

    Абсорбция света, то же, что поглощение света…



    Абстенционисты

    Абстенционисты (от латинского abstentio - воздержание, отказ), бойкотисты, сторонники бойкота парламентских выборов. Это название закрепилось в 1919-20 за частью левых элементов Итальянской…



    Абстиненция

    Абстиненция (лат. abstinentia - воздержание), 1) полное воздержание от употребления спиртных напитков. 2) Половое воздержание. 3) Особое физическое и психическое состояние, появляющееся у наркоманов (…



    Абстрактное искусство

    Абстрактное искусство, абстракционизм, беспредметное искусство, нонфигуративное искусство, течение в искусстве многих, главным образом капиталистических, стран, принципиально отказавшееся от…



    Абстрактный труд

    Абстрактный труд, см. в ст. Товар…



    Абстракции принцип

    Абстракции принцип, логический принцип, лежащий в основе определений через абстракцию: любое отношение типа равенства, определённое на некотором исходном множестве элементов, разбивает (делит, классифицирует) исходное множество на попарно непересекающиеся классы равных (в данном отношении) элементов. Указанные классы называются классами абстракции данного отношения, а множество этих классов — фактормножеством исходного множества по данному отношению. А. п. выражает, т. о., процесс абстракции: если выделен класс в каком-либо смысле равных предметов (класс абстракции, или класс эквивалентности), то тем самым определён и "абстрактный" (произвольный) предмет этого класса, поскольку с точки зрения целей, определяющих данное отношение равенства, каждый "конкретный" предмет исходного множества понимается в качестве "абстрактного" предмета — носителя свойства, общего всем элементам данного класса абстракции. Посредством А. п. вводятся в качестве абстрактных объектов не только "представители" классов абстракции, получаемых при разбиении каким-либо отношением R исходного множества Z, но и сами эти классы. Например, если Z — множество всех прямых (плоскости или пространства), а R — отношение параллельности, то класс абстракции произвольной прямой a1 из Z по R — это класс всех прямых из Z, параллельных a1, класс абстракции a2 из Z по R — класс прямых, параллельных a2, и т. д. Но тем самым в качестве нового "объекта" вводится новое понятие направления. И именно так фактически формируются любые абстрактные понятия. Например, понятие непрерывной функции есть один из классов абстракции, порождающихся разбиением множества всех (числовых) функций отношением типа эквивалентности, связывающим все функции, удовлетворяющие определению непрерывности (и только такие функции). В этом типичном случае фактормножество состоит всего из двух элементов: "непрерывная (функция)" и "разрывная", и А. п. принимает здесь форму утверждения о допустимости рассматривать корректным образом класс непрерывных функций (или понятие непрерывности). Второй фигурирующий в этом примере класс абстракции (приводящий к формированию отрицательного понятия разрывности) является дополнением первого и явным образом не участвует в формулировке данного применения А. п. (впрочем, "отрицательность" второго понятия несущественна: при разбиениях чисел на чётные и нечётные, людей на мужчин и женщин, позвоночных на теплокровных и холоднокровных и т. п., оба вводимых понятия равноправны). Такая форма А. п. (которой часто присваивают наименование принципа свёртывания), утверждающая "существование" абстрактного класса (множества) всех объектов, удовлетворяющих произвольному разумным образом охарактеризованному свойству (предикату), играет основополагающую роль в теории множеств (о возникающих в связи с этим принципом проблемах, см. Аксиоматическая теория множеств и литературу к этой статье).

    М. М. Новосёлов.

     

    Определение через абстракцию

    Определение через абстракцию, способ описания (выделения, "абстрагирования") не воспринимаемых чувственно ("абстрактных") свойств предметов путём задания на предметной области некоторого отношения…

    Отношение типа равенства

    Отношение типа равенства, отношение эквивалентности, понятие логики и математики, выражающее факт наличия одних и тех же признаков (свойств) у различных объектов. Относительно таких общих признаков…

    Абстракция

    Абстракция (от латинского abstractio - отвлечение), 1) метод научного исследования, основанный на том, что при изучении некоторого явления, процесса не учитываются его несущественные стороны и…

    Эквивалентность

    Эквивалентность, наименование отношений типа равенства, т. е. рефлексивных (см. Рефлексивность), симметричных (см. Симметричность) и транзитивных (см. Транзитивность) бинарных отношений. Например…

    Понятие

    Понятие, форма мышления, отражающая существенные свойства, связи и отношения предметов и явлений в их противоречии и развитии; мысль или система мыслей, обобщающая, выделяющая предметы некоторого…

    Функция (математ.)

    Функция, одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Если величины x и у связаны так, что каждому значению x соответствует определённое значение у…

    Аксиоматическая теория множеств

    Аксиоматическая теория множеств, формулировка множеств теории в виде формальной (аксиоматической) системы (см. Аксиоматический метод). Основным побудительным стимулом для построения А. т. м. явилось…